
A Short History of Schema Mapping Systems?

Giansalvatore Mecca1, Paolo Papotti2, and Donatello Santoro1

1 Università della Basilicata – Potenza, Italy
2 Qatar Computing Research Institute (QCRI) – Doha, Qatar

A Short History of Schema Mapping Systems
(Extended Abstract)

Giansalvatore Mecca1, Paolo Papotti2, and Donatello Santoro1

1 Università della Basilicata – Potenza, Italy
2 Qatar Computing Research Institute (QCRI) – Doha, Qatar

1 Introduction

There are many applications that need to exchange, correlate, and integrate
heterogenous data sources. These information integration tasks have long been
identified as important problems and unifying theoretical frameworks have been
advocated by database researchers [5].

To solve these problems, a fundamental requirement is that of manipulating
mappings among data sources. The application developer is typically given two
schemas – one called the source schema, the other called the target schema –
that can be based on different models, technologies, and rules. Mappings, also
called schema mappings, are expressions that specify how an instance of the
source repository should be translated into an instance of the target repository.
In order to be useful in practical applications, they should have an executable
implementation – for example, by means of SQL queries or XQuery scripts.
This latter feature is a key requirement in order to embed the execution of
the mappings in more complex application scenarios, that is, in order to make
mappings a plug and play component of integration systems.

Traditionally, data transformation has been approached as a manual task
requiring experts to understand the design of the schemas and write scripts
to translate data. As this work is time-consuming and prone to human errors,
mapping generation tools have been created to make the process more abstract
and user-friendly, thus easier to handle for a larger class of people.

In this paper, we outline a history of the different phases that have charac-
terized the research about automatic tools and techniques for schema mappings
and data exchange. We identify three different ages, as follows.

The Heroic Age The heroic age of schema-mappings research started ten years
ago with the seminal papers about the Clio system [17, 19]: a first generation of
tools was proposed to support the process of generating complex logical depen-
dencies – typically tuple-generating dependencies [4] – based on a user-friendly
abstraction of the mapping provided by the users. Once the dependencies are
computed, these tools transform them into executable scripts to generate a target
solution in a scalable and portable way.

Early schema-mapping tools proved to be very effective in easing the burden
of manually specifying complex transformations, and were successfully trans-
ferred, to some extent, into commercial products (e.g., [13]). However, several

? Extended Abstract

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



100 G. Mecca, P. Papotti, and D. Santoro

years after the development of the initial Clio algorithm, researchers realized that
a more solid theoretical foundation was needed in order to consolidate practical
results obtained on schema mappings systems. This consideration has motivated
a rich body of research about data exchange that characterizes the next age.

The Silver Age Data exchange [5, 8, 19] formally studies the semantics of gen-
erating an instance of a target database given a source database and a set of
mappings. It has formalized the notion of a data exchange problem [8], and has
established a number of results about its properties.

After the first data exchange studies, it was clear that a key problem in
schema-mappings tools was that of the quality of the solutions. In fact, there
are many possible solutions to a data-exchange problem, and these may largely
differ in terms of size and contents. The notion of the core of the universal
solutions [10] was identified as the “optimal” solution, since it is the smallest
among the solutions that preserve the semantics of the mapping.

In the last three years an intermediate generation of tools [16, 21] have
emerged to address the problem of generating solutions of optimal quality, while
guaranteeing at the same time the portability and scalability of the executable
scripts. Nevertheless, despite the solid results both in system and theory fields,
the adoption of mapping systems in real-life integration applications, such as
ETL workflows or Enterprise Information Integration, has been quite slow. This
seems to be due to three main factors: (a) these systems were not able, at first,
to handle functional dependencies over the target, which is a key requirement in
order to obtain solutions of quality; (b) the results were obtained primarily for
relational databases, and did not extend to nested models and XML; (c) finally,
there was no open-source schema-mapping tool available to the community.

The Golden Age A number of recent results [14, 7], along with the public avail-
ability of the first open-source mapping tools – like ++Spicy [15] and OpenII
[20] – seem to be a promising starting point towards the solution of these prob-
lems and the beginning of a new, golden age for mapping tools. These works,
along with others [1, 11], are giving new vitality to schema-mappings research
and suggest new applications, beyond traditional data exchange and data inte-
gration tasks.

In the following, we first describe the three ages in Section 2 and we then
draw some conclusions in Section 3.

2 A History of Schema Mappings In Three Ages

2.1 The Heroic Age

The first mapping generation tools were created to make the process of defining
transformations among schemas easier and more effective with respect to manu-
ally developed scripts. This first generation of tools includes primarily Clio [12,
13, 17, 19] and systems [6, 20] which incorporate a Clio-like first-generation map-
ping module. We summarize the features of these early mapping tools as follows.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



A Short History of Schema Mapping Systems 101

Value Correspondences The goal of simplifying the mapping specification was
pursued by introducing a GUI that allows users to draw arrows, or correspon-
dences, between schemas in order to define the desired transformation.

Fig. 1. Schema mapping scenario.

Consider the example shown in Figure 1, where data from multiple sources
should be transformed into data for a target schema with a foreign key con-
straints between two relations. A correspondence maps atomic elements of the
source schema to elements of the target schema, independently of the underlying
data model or of logical design choices, and can be derived automatically with
schema matching components. Notice that, while correspondences are easy to
create and understand, they are a “poor” language to express the full semantics
of data transformations. For this reason, a schema mapping tool should be able to
interpret the semantics the user wants to express with a set of correspondences.
Mapping Generation Based on value correspondences, mapping systems generate
logical dependencies to specify the mapping. These dependencies are logical for-
mulas of two forms: tuple-generating dependencies (tgds) or equality-generating
dependencies (egds). There are two classes of constraints. Source-to-target tgds
(s-t tgds), i.e., tgds that use source relations in the premise and target relations
in the conclusion, are used to specify which tuples should be present in the target
based on the tuples that appear in the source. In an operational interpretation,
they state how to “translate” data from the source to the target. Target schemas
are also modeled with constraints: target tgds, i.e., tgds that only use target sym-
bols, are used to specify foreign-key constraints on the target; while target egds
are used to encode functional dependencies, such as keys, on the target database.

The mapping scenario in Figure 1 has three different source tables: (i) a
table about subscribers of a service; (ii) a table with the email addresses of the
people receiving the company mailing list; (iii) a table about clients and their
check accounts. The target schema contains two tables, one about persons, the
second about accounts. On these tables, we have two keys: name is a key for the
persons, while number is a key for the accounts. Based on the correspondences
drawn in Figure 1, a Clio-like system would generate the following set of tgds:

Source-to-Target Tgds
m1.∀n : Subscriber(n)→ ∃Y1, Y2 :Person(n, Y1, Y2)
m2.∀n, e : MailingList(n, e)→ ∃Y1 :Person(n, e, Y1)
m3. ∀n, acc : Client(n, acc)→ ∃Y1, Z : (Person(n, Y1, Z) ∧Account(Z, acc))

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



102 G. Mecca, P. Papotti, and D. Santoro

In addition, the following egds translate the key constraints on the target schema:

Target Egds
e1. ∀n, e, a, e′, a′ :Person(n, e, a) ∧ Person(n, e′, a′)→ (e = e′) ∧ (a = a′)
e2. ∀n, i, i′ : Account(i, n) ∧Account(i′, n)→ (i = i′)

Mapping Execution via Scripts To execute the mappings, schema-mapping sys-
tems rely on the traditional chase procedure [8]. The chase is a fixpoint algorithm
which tests and enforces implication of data dependencies, such as tgds, in a
database. To be more specific, a first-generation system, after the mappings had
been generated, would discard the target dependencies, and translate the source-
to-target ones under the form of an SQL or XQuery script that implements the
chase and can be applied to a source instance to return a solution.

Notice, in fact, that the chase of a set of s-t tgds on I can be naturally
implemented using SQL. Given a tgd φ(x) → ∃y(ψ(x, y)), in order to chase it
over I we may see φ(x) as a first-order query Qφ with free variables x over the
source database. We execute Qφ(I) using SQL in order to find all vectors of
constants that satisfy the premise and we then insert the appropriate tuple into
the target instance to satisfy ψ(x, y). Skolem functions [19] are typically used to
automatically “generate” some fresh nulls for y.

However, these systems suffer from a major drawback: they did not have a
clear theoretical foundation, and therefore it was not possible to reason about
the quality of the solutions.

2.2 The Silver Age

Data exchange was conceived as an attempt to formalize the semantics of schema
mappings. It formalized many aspects of the mapping execution process, as fol-
lows.

Data Exchange Fundamentals. In a data-exchange setting, the source
and target databases are modeled by having two disjoint and infinite sets of
values that populate instances: a set of constants, const, and a set of labeled
nulls, nulls [8]. Labeled nulls are used to “invent” values according to existential
variables in tgd conclusions. The reference data model is the relational one.

A mapping scenario (also called a data exchange scenario or a schema map-
ping) is a quadruple M = (S,T, Σst, Σt), where S is a source schema, T is a
target schema, Σst is a set of source-to-target tgds, and Σt is a set of target
dependencies that may contain tgds and egds [8].

Given two disjoint schemas, S and T, we denote by the pair 〈S,T〉 the schema
{S1 . . .Sn,T1 . . .Tm}. If I is an instance of S and J is an instance of T, then
the pair 〈I, J〉 is an instance of 〈S,T〉.A target instance J is a solution [8] ofM
and a source instance I iff 〈I, J〉 |= Σst ∪ Σt, i.e., I and J together satisfy the
dependencies. Given a mapping scenarioM = (S,T, Σst, Σt), a pre-solution for
M and a source instance I is a solution over I for scenario Mst = (S,T, Σst),
obtained from M by removing target constraints. In essence, a pre-solution is
a solution for the s-t tgds only, and it does not necessarily enforce the target

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



A Short History of Schema Mapping Systems 103

Fig. 2. Source instance (a) and three possible solutions (b-d).

constraints. Given the source data in Figure 2.a, the canonical pre-solution is re-
ported in Figure 2.b. A mapping scenario may have multiple solutions on a given
source instance: each tgd only states an inclusion constraint and does not fully
determine the content of the target. Among the possible solutions we restrict
our attention to universal solutions, which only contain information from I and
Σst ∪ Σt. Universal solutions have a crucial property: they have a homomor-
phism (i.e., a constant-preserving mapping of values) into all the solutions for a
data exchange problem. Intuitively, this guarantees that the solution does not
contain any arbitrary information that does not follow from the source instance
and the mappings. Under a condition of weak acyclicity of the target tgds, an
universal solution for a mapping scenario and a source instance can be computed
in polynomial time by resorting to the classical chase procedure [8]. A solution
generated by the chase is called a canonical solution. In light of this, we may say
that early mapping systems were restricted to generate canonical pre-solutions,
since they chased s-t tgds only.

Tools of the Intermediate Generation. Once the theory of data-exchange
had become mature, it was clear that producing solutions of quality was a critical
requirement. The notion of a core solution [10] was formalized as the “optimal”
solution, since it is universal, and among the universal solutions is the one of the
smallest size. In our example, the core solution is reported in Figure 2.d.

Sophisticated algorithms were developed to post-process a canonical solution
generated by a schema-mapping tool, and minimize it to find its core [10, 18].
These tools have the merit of being very general, but fail to be scalable: even
though the algorithms are polynomial, their implementation requires to couple
complex recursive computations with SQL to access the database, and there-
fore do not scale nicely scale to large databases. In fact, empirical results show
that they are hardly usable in practice due to unacceptable execution times for
medium size databases [16].

It was therefore clear that, in order to preserve the effectiveness and generality
of mapping tools, reasoning about the mapping was necessary. First, a number
of approaches were proposed to optimize schema mappings in order to improve
the efficiency of their execution and manipulation. In fact, schema mappings
may present redundancy in their expressions, due for example to the presence
of unnecessary atoms or unrelated variables, thus negatively affecting the data
management process [9, 18].

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



104 G. Mecca, P. Papotti, and D. Santoro

A different approach to the generation of core solutions was undertaken in [16,
21]. In these proposals, scalability is a primary concern. Given a mapping sce-
nario composed of source-to-target tgds (s-t tgds), the goal is to rewrite the
tgds in order to generate a runtime script, for example in SQL, that, on input
instances, materializes core solutions. This is a key requirement in order to em-
bed the execution of the mappings in more complex application scenarios, that
is, in order to make data-exchange techniques a real “plug and play” feature
of integration applications. +Spicy [16] is an example of mapping tool of this
generation. These works exploit the use of negation in the premise of the s-t tgds
to rewrite them intercepting possible redundancy. Consider again our running
example; algorithms for SQL core-generation would rewrite m1 to make sure
that no redundant data are copied to the target from the relation Subscriber :

m′
1. Subscriber(n) ∧ ¬(MailingList(n,E)) ∧ ¬(Client(n,A))→ Person(n, Y1, Y2)

Experiments [16] show that, in the computation of the core solution, with exe-
cutable scripts there is a gain in efficiency of orders of magnitude with respect to
the post-processing algorithms. This is not surprising, as these mapping rewrit-
ing approaches preserve the possibility to execute transformations in standard
SQL, with the guarantee of scalability to large databases and of portability to
existing applications.

However, these tools still have some serious limitations, that prevent their
adoption in real-life scenarios. We may summarize these limitations as follows.

(a) They have limited support for target constraints. Handling target constraints
– i.e., keys and foreign keys, represented by egds and target tgds [8], respectively
– is a crucial requirement in many mapping applications. Notice that foreign-
key constraints were at the core of the original schema-mapping algorithms, and,
under appropriate hypothesis, can always be rewritten as part of the source-to-
target tgds [9]. Unfortunately this is not the case for target edgs.

Consider again the running example; the best a tool from this generation can
obtain with executable scripts is the core pre-solution reported in Figure 2.c,
where the redundancy coming from the source-to-target tgds has been removed,
but the solution lacks the enforcement of the target key constraints.

(b) They are limited to relational scenarios, and cannot handle XML or nested
datasets. This is a consequence of the fact that data-exchange research has pri-
marily concentrated on the relational setting, and for a long time no notion of
data exchange for more complex models was available. In a way, this is a setback
with respect to the early systems, which had supported nested relations since
the beginning with a pragmatical approach. In fact, they were able to produce
results for XML setting, but without the precise definition of quality that core
solutions provide. It is interesting to note that a benchmark for mapping systems
has been recently proposed [2]. However, none of the tools of the intermediate
generation can be evaluated using the benchmark – for example in order to com-
pare the quality of their solutions – since most of the scenarios in the benchmark
refer to nested structures, and these systems are not capable to generate core
solutions for a nested data model.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



A Short History of Schema Mapping Systems 105

2.3 Time for a Golden Age

Recent results have faced these problems and paved the way towards the emer-
gence of a new-generation of schema-mapping and data-exchange tools.

A first important advancement is related to the management of functional
dependencies over the target. Although it is not always possible, in general, to
enforce a set of egds using a first-order language as SQL, it has been proposed
a best-effort algorithm that rewrites the above mapping into a new set of s-t
tgds that directly generate the target tuples that are produced by chasing the
original tgds first and then the egds [14]. As egds merge and remove tuples from
the pre-solution, to correctly simulate their effect the algorithm puts together
different s-t tgds and uses negation to avoid the generation of unneeded tuples
in the result. Other approaches and semantics for the rewriting of s-t tgds have
also been recently introduced [1].

Another important aspect is the extension to nested relations and XML.
The theoretical properties of data exchange in a general XML setting have been
recently studied [3, 7], and, due to the generality, have been shown to exhibit
several negative properties. However, important results were established for the
fragment of XML data exchange in which the data model is restricted to cor-
respond to nested relations. A very important result was reported in [7]: the
authors show that the generation of universal solutions for a nested scenario can
be reduced to the generation of solutions for a traditional, relational scenario,
even in the presence of target constraints. The authors also provide an algorithm
to perform the reduction.

We believe that these recent results, together with important theoretical
studies, such as the ones on mapping invertion [11], open new possibilities for
research on schema mappings. A notable example of a new generation of tool has
been recently presented [15]. The ++Spicy tool can deal with different data man-
agement tasks, including data fusion, data cleaning and ETL scenarios, which, in
our opinion, represent very promising areas of application of the latest schema-
mappings and data-exchange techniques.

3 Conclusions

Schema mapping management is an important research area in data transfor-
mation, exchange and integration systems. From the early prototypes developed
ten years ago, important results have been consolidated, but, despite the good
results, the adoption of mapping systems in real-life integration applications has
been slow. We have shown how emerging trends are overcoming the limits of
the initial proposal and are going to encourage the developing of more systems
based on schema mappings. On one side, novel theoretical results are paving the
way to the creation of innovative applications for real world problems. On the
other side, a new generation of tools for the creation and optimization of schema
mappings are widening the opportunities offered by such technology.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



106 G. Mecca, P. Papotti, and D. Santoro

References

1. B. Alexe, M. A. Hernández, L. Popa, and W. C. Tan. Mapmerge: Correlating
independent schema mappings. PVLDB, 3(1):81–92, 2010.

2. B. Alexe, W. Tan, and Y. Velegrakis. Comparing and Evaluating Mapping Systems
with STBenchmark. PVLDB, 1(2):1468–1471, 2008.

3. M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query Answering.
J. of the ACM, 55(2):1–72, 2008.

4. C. Beeri and M. Vardi. A Proof Procedure for Data Dependencies. J. of the ACM,
31(4):718–741, 1984.

5. P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In SIGMOD, pages 1–12, 2007.

6. A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema Map-
ping Verification: The Spicy Way. In EDBT, pages 85 – 96, 2008.

7. R. Chirkova, L. Libkin, and J. Reutter. Tractable XML Data Exchange via Rela-
tions. In CIKM, 2011.

8. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange: Semantics and Query
Answering. TCS, 336(1):89–124, 2005.

9. R. Fagin, P. Kolaitis, A. Nash, and L. Popa. Towards a Theory of Schema-Mapping
Optimization. In ACM PODS, pages 33–42, 2008.

10. R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. ACM
TODS, 30(1):174–210, 2005.

11. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Schema Matching and Mapping,
chapter Schema Mapping Evolution Through Composition and Inversion. 2011.

12. A. Fuxman, M. A. Hernández, C. T. Howard, R. J. Miller, P. Papotti, and L. Popa.
Nested Mappings: Schema Mapping Reloaded. In VLDB, pages 67–78, 2006.

13. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio Grows Up: from
Research Prototype to Industrial Tool. In SIGMOD, pages 805–810, 2005.

14. B. Marnette, G. Mecca, and P. Papotti. Scalable data exchange with functional
dependencies. PVLDB, 3(1):105–116, 2010.

15. B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro. ++Spicy:
an opensource tool for second-generation schema mapping and data exchange.
PVLDB, 4(11):1438–1441, 2011.

16. G. Mecca, P. Papotti, and S. Raunich. Core Schema Mappings. In SIGMOD, 2009.
17. R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query Dis-

covery. In VLDB, pages 77–99, 2000.
18. R. Pichler and V. Savenkov. DEMo: Data Exchange Modeling Tool. PVLDB,

2(2):1606–1609, 2009.
19. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating

Web Data. In VLDB, pages 598–609, 2002.
20. L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey, K. Chen, C. Wolf, J. Mad-

havan, A. Kannan, and D. Burdick. OpenII: an Open Source Information Integra-
tion Toolkit. In SIGMOD, pages 1057–1060, 2010.

21. B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic Schema Map-
pings: Computing Core Universal Solutions by Means of SQL Queries. PVLDB,
2(1):1006–1017, 2009.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors




