Enhancing Datalog with Epistemic Operators to
Reason About Knowledge in
Distributed Systems*

Matteo Interlandi

University of Modena and Reggio Emilia
matteo.interlandi@unimore.it

Abstract. In the last few years, researchers started to investigate how
recursive queries and deductive languages can be applied to find solutions
to the new emerging trends in distributed computing. We conjecture
that a missing piece in the current state-of-the-art in logic programming
is the capability to express statements about the knowledge state of
distributed nodes. In fact, reasoning about the state of remote nodes
is fundamental in distributed contexts in order to design and analyze
protocol behavior. To reach this goal, we leveraged Datalog™ with an
epistemic modal operator, allowing the programmer to directly express
nodes’ state of knowledge instead of low level communication details. To
support the effectiveness of our proposal, we introduce, as example, the
declarative implementation of a well-known protocol employed to execute
distributed databases transactions: the two phase commit protocol.

1 Introduction

Pushed by the new interest that Datalog is acquiring in the database community,
the goal of this paper is to open a new direction in the investigation on how
Datalog could be adopted to program distributed systems. Many authors have
stated how logic programming in general [6] and Datalog in particular [5] seems
to particularly fit the representation of distributed programs implementation and
properties. We think that a missing point is the possibility to express statements
about the knowledge state of distributed nodes in Datalog. In fact, the ability to
reason about the knowledge state of remote nodes has been demonstrated [4] to
be a fundamental tool in multi-agent systems in order to specify global behaviors
and properties of protocols. Motivated by all these facts, we leveraged Datalog™
with an epistemic modal operator, allowing the programmer to express directly
nodes’ state of knowledge instead of low level communication details. To support
our assertions, we describe our implementation of the two phase commit protocol.
The remainder of the paper is organized as follow: Section 2 contains some
preliminary notations about Datalog™. Section 3 describes what we intend for

* This work is partially taken from [9].

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



266 M. Interlandi

a distributed system and introduces some concept such as global state, run and
the modal operator K. Section 4 introduces Knowlog and the implementation
of the two phase commit protocol. The paper finish with conclusions and future
work.

2 Preliminaries

In order to define Knowlog, we first introduce some principles of Datalog™ [1],
and Datalog™ augmented with temporal constructs [8,3]. A Datalog™ rule is an
expression in the form:

H(u) + B1(41), ..., Bp(an), 7C1(01), ooy 2Cip, (U1

where n,m > 0, H, B;, C; are relation names ¢ = 0,...,n and j = 0,...,m and
u, U, U; are tuples of appropriate arities. Tuples are composed by terms and each
term can be a constant in the domain dom or a variable in the set var. We will
use interchangeably terms predicates and relations. As usual H (u) is referred as
the head, B;(@;), C;j(v;) as the body, and in general H (@), B;(u;) and C;(9;)
as atoms. A literal is an atom (in this case we refer to it as positive) or the
negation of an atom. If m = n = 0 and does not contains variable terms, the
rule express a fact or equivalently a groud atom. In this paper we assume that
each rule is range restricted, i.e. every variable occurring in a rule-head appears
in at least one positive literal of the rule body. Then, a Datalog™ program II
is a set of range restricted rules. For a database schema R, a database instance
is a finite set I constructed by the union of the relation instances over R with
R € R arelation name and where each relation instance is a finite set of facts. As
introductory example, we use the program depicted in Listing 1.1 where we used
a relation 1link, containing tuples in the form (S,D), to specify the existence of
a link between a source node S and a destination node D. In addition we employ
the path relation, which is computed starting from the link relation (r1) and
recursively adding a new path when, roughly speaking, there is a link from A to
B and already exists a path from B to C (r2).

rl: path(X,Y):-1ink(X,Y)
r2: path(X,Z):-link(X,Y),path(Y,Z)

Listing 1.1. Simple Recursive Datalog Program

2.1 Time in Datalog™

With the language we are introducing, we want to model programs for dis-
tributed systems. These systems are not static, but evolving with time. There-
fore it will be useful to enrich Datalog™ with some notion of time. To reach this
goal we follow the road traced by Statelog [8] and Dedalus [3]. Thus, informally,
each relation is labeled with a time-step identifier having values in N and which
specify at what time-step a given instance has been derived and is true. A con-
sequence of this approach is that tuples by default are considers ephemeral, i.e.,
they are valid only for one single time-step. Obviously, tuples can became per-
sistent - once derived, for example at time s, they last for every time ¢t > s - if

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



Datalog™ with Epistemic Operators to Reason in Distributed Systems 267

they are stored in persistent relations. Among the different temporal extensions
of Datalog™ available in the literature, we embrace the Dedalus [3] notation,
thus programs’ rules are divided in two sets: inductive and deductive. The for-
mer set contains all the rules employed for transfer tuples among time-steps i.e.,
persistency rule, while the latter encompasses the rules that are local into a
single time-step. Some syntactic sugar is adopted in order to better character-
ize rules and relations: deductive rules appears as usual Datalog™ rules, while
a next suffix is introduced in head relations to characterize inductive rules. In
Listing 1.2 the simple program of the previous section is rewritten to introduce
the new formalism: a persistent relation rule (r1) and a rule for the modification
of the link relation if a tuple is issued to the ephemeral relation link_down,
representing an event on the link which cause the link to be disconnected.

ril: link(X,Y)@next:-1ink(X,Y),—del_link(X,Y)
r2: del_link(X,Y):-link_down(X,Y)

r3: path(X,Y):-link(X,Y)

r4: path(X,Z):-link(X,Y),path(Y,Z)

Listing 1.2. Inductive and Deductive Rules
3 Distributed Logic Programming

Before starting the discussion on how we leverage the language with epistemic
operators, we first introduce our model of distributed system and how commu-
nication among nodes is performed. We define a distributed message-passing
system to be a non empty finite set IV of share-nothing nodes joined by bidirec-
tional communication links. Each node identifier has a value in the domain dom
but here we consider the set N = {1,...,n} of node identifiers, where n is the
total number of nodes in the system. We identify with adb a new set of accessi-
ble relations encompassing all the tables that are horizontally partitioned among
nodes and through which nodes are able to communicate. Each relation R € adb
contains a location specifier term [7]. This term maintains the identifier of the
remote node to which every new fact inserted into the relation R must be issued.
As pointed out in [5, 3], modeling communication using relations provides major
advantages. Continuing with the examples introduced in the previous sections,
in order to describe Listing 1.3 we can imagine a real network configuration
where each node has locally installed the program, and where each 1ink relation
reflect the actual state of the connection between nodes. For instance, we will
have the fact 1ink (A,B) in node A’s instance if a communication link between
A and node B exists. The location specifier term is identified by the @ prefix.

rl: link(X,Y)@next:-1ink(X,Y),—del_link(X,Y)

r2: del_link(X,Y):-link_down (X,Y)

r3: path(@X,Y):-link(X,Y)

rd: path(@X,z):-link(X,Y),path(@Y,Z)

Listing 1.3. Distributed Program

The semantics of the program in Listing 1.3 is the same as in the previous
section, even though operationally it substantially differs. In fact, in this new

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



268 M. Interlandi

version, computation is performed simultaneously on multiple distributed nodes.
Communication is achieved through rule r4 which, informally, specify that a path
from a node A to a node C exists if there is a link from A to another node B
and this last knows that exist a path from B to C.

3.1 The Knowledge Model

In every point in time, each node is in some particular local state incapsulating
all the information the node possesses. We use s; to denote the local state of
node i . We define the global state of a distributed system as a tuple (s1, ..., S,)
where s; is the node i’s state. We define how global states may change over
time through the notion of run, which binds time values to global states, i.e.,
r: N — G where G = {51 X ... x S,,} and S; is the set of possible local state for
node i € N. Following [4] we define a system as a set of runs. Using this definition
we are able to deal with a system not as a collection of interacting nodes but,
instead, directly modeling its behavior, abstracting away many low level details.
In knowledge-based systems, nodes are able to accomplish actions not only based
on their local state, but also on the knowledge the node has, i.e., the information
the node has about the state of the system. If we consider two runs of a system,
with global states respectively g = (s1,...,8,) and ¢’ = (s},...,s),), g and ¢’
are indistinguishable for process i, and we will write g ~; ¢’ if 4 has the same
local state both in g and ¢, i.e., s; = s;. We use the modal operator K; and we
write K;1 to express that a node ¢ knows sentence v: in every global state that
1 considers possible - i.e., all the global state that are indistinguishable for 7 -
the sentence 1 is true. This definition of knowledge follows the axioms that are
called S5. We refer the reader to [9] for a detailed discussion about the modal
operator K.

4 Incorporating Knowledge: Knowlog

We employ [J to denote a (possible empty) sequence of modal operators K and
we use the following statement to express it in a rule form:

O(H < By, ..., Bp,~Ch, ..., ~Cyn) (1)

with n,m > 0 and each positive literal is in the form [JR, while negative literals
are in the form K;00R where K is equal to the model context. From [10] we adopt
the term modal context to refer to the sequence - with the maximum length of
one - of modal operators appearing in front of a rule. We put some restriction
on the sequence of operators permitted in [J.

Definition 1. Given a (possibly empty) sequence of operators O, O is in re-
stricted form if it does not contain K;K; subsequences, with i specifying a process
identifier.

Definition 2. A Knowlog program is a set of rules in the form (1), containing
only (possible empty) sequences of modal operators in the restricted form and
where the subscript i of each modal operator K; can be a constant or a variable.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



Datalog™ with Epistemic Operators to Reason in Distributed Systems 269

Informally speaking, given a Knowlog program, using modal context we are able
to assign to each node the rules the node is responsible for, while atoms and
facts residing in the node 7 are in the form K;C1R. We define communication
rules as follow:

Definition 3. A communication rule in Knowlog is a rule where no modal con-
text is set and the body atoms have the form K;OOR - namely they are prefixed
with modal operators related to the same process - while the head atom has the
form K;OR’, with i # j and not necessarily R’ # R.

In this way, we are able to abstract away all the low level details about how
information is exchanged, leaving to the programmer just the task to specify
what a process should know, and not how. For the definition of the Knowlog
semantics we refer to [9].

The Two-Phase-Commit Protocol Inspired by [2], we implemented the two-
phase-commit protocol (2PC) using the epistemic operator K. 2PC is used to
execute distributed databases transaction and it is divided in two phases: in
the first phase, called the woting phase, a coordinator node submit to all the
transaction’s participants the willingness to perform a distributed commit. Con-
sequently, each participant sends a vote to the coordinator, expressing its inten-
tion. In the second phase - namely the decision phase - the coordinator collects
all votes and decides if performing global commit or abort. The decision is then
issued to the participants which act accordingly. In the 2PC implementation of
Listing 1.4, we assume that our system is composed by three nodes: one coordi-
nator and two partecipants. Due to the lack of space, we considerably simplify
the 2PC protocol. For a more detailed discussion we refer the reader to [9].

\\Initialization at coordinator
rl: Kc(part_cnt (count<N>) :-nodes(N))
r2: K. (transaction(Tx_id,State):-log(Tx_id,State))
\\Decision Phase at coordinator
r3: K. (yes_cnt (Tx_id,count<part>):-vote(Vote,Tx_id,part),Vote == "yes"))
r4: Ko (log(Tx_id,"commit")@next :-part_cnt (C),yes_cnt (Tx_id,C1),C==C1,
State=="vote-req",transaction(Tx_id,State))
r5: Kc(log(Tx_id, "abort"):-vote(Vote,Tx_id,part),Vote == "no",
transaction (Tx_id,State) ,State =="vote-req")
\\Voting Phase at partecipants
r6: Ky (log(Tx_id, "prepare") :-State=="vote-req",K.transaction (Tx_id,State))
r7: Ke (log("abort",Tx_id) :-log(Tx_id,State) ,State=="prepare",
db_status (Vote) ,Vote=="no")
\\Decision Phase at partecipants
r8: K (log(Tx_id,"commit"):-log(Tx_id,State_1),State_l=="prepare",
State_t=="commit",K.transaction(Tx_id,State_t))
r9: K (log(Tx_id, "abort"):-log(Tx_id,State_1),State_l=="prepare",
State_t=="abort",K.transaction(Tx_id,State_t))
\\Communication
r10:Kytransaction (Tx_id, State):-Kcsubs(X),

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



270 M. Interlandi

Kctransaction (Tx_id,State) ,Kcpath(@Y,X)
ri1:Kc.vote(Vote,Tx_id, "subl") : -Ks;log(Tx_id,State),

State=="prepare" ,K,1db_status (Vote) ,K,1path(@P1,C)
r12:Kc.vote(Vote,Tx_id, "sub2") : -Ksolog(Tx_id,State),

State=="prepare" ,K,odb_status (Vote) ,K.opath(@P2,c)

Listing 1.4. Two Phase Commit Protocol

In the above example, for simplicity we wrote K} as a modal context instead of
Kpl and KPQ.

5 Conclusion and Future Work

In this paper we present Knowlog, a programming language based on Datalog™
leveraged with a notion of time and modal operators. Through Knowlog, reason-
ing about state of knowledge in distributed systems can be performed, therefore
lighten the programmer’s burden of expressing low level communication details.
What we discussed here is a first step towards the definition of a comprehensive
logical framework able to define a declarative as well as operational semantics,
and generic enough to be adopted in multiple contexts. We are confident that
following our approach, properties such as processes coordination and replicas
consistency can be exhaustively defined.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Alvaro, P., Condie, T., Conway, N., Hellerstein, J.M., Sears, R.: 1 do declare:
consensus in a logic language. Operating Systems Review 43(4) (2009) 25-30

3. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. Sears.
Dedalus: Datalog in time and space. Datalog Reloaded - First International Work-
shop, Datalog 2010, Oxford, UK, 2010, 262—-28.

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge, MA, USA (2003)

5. Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Rec. 39 (September 2010) 5-19

6. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16
(May 1994) 872-923

7. Loo, B.T., Condie, T., Garofalakis, M., Gay, et al. : Declarative networking: lan-
guage, execution and optimization. In: SIGMOD ’06, New York, NY, USA, ACM
(2006) 97-108

8. Ludéscher, B.: Integration of Active and Deductive Database Rules. Volume 45 of
DISDBIS. Infix Verlag, St. Augustin, Germany (1998)

9. Interlandi, M.: Knowlog: A Declarative Language for Reasoning about Knowledge
in Distributed Systems. ER’12 PhD Symposium Florence, Italy (2012)

10. Nguyen, L.A.: Foundations of modal deductive databases. Fundam. Inf. 79 (Jan-

uary 2007) 85-135

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors





