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Abstract. This paper faces the problem of answering conjunctive queries
over Datalog programs allowing existential quantifiers in rule heads. Such
an extension of Datalog is highly expressive, enables easy yet powerful
ontology-modelling, but leads to undecidable query answering in general.
To overcome undecidability, we first define Shy, a subclass of Datalog
with existential quantifiers preserving not only decidability but also the
same complexity of query answering over Datalog. Next, we design and
implement a bottom-up evaluation strategy for Shy programs. Our com-
putation strategy includes a number of optimizations resulting in DLV∃,
a powerful reasoner over Shy programs. Finally, we carry out an experi-
mental analysis comparing DLV∃ with some state-of-the-art systems for
ontology-based query answering. The results confirm the effectiveness of
DLV∃, which outperforms all other systems in the benchmark.

1 Introduction

In the field of data and knowledge management, query answering over ontologies
(QA) is becoming more and more a challenging task [9,6,18]. In this context, a
conjunctive query (CQ) q is not merely evaluated on a extensional relational
database D, but over a logical theory combining D with an ontology Σ describ-
ing rules for inferring intensional knowledge from D. A key issue here is the
design of the language provided for specifying Σ. It should balance expressive-
ness and complexity, and in particular it should possibly be: (1) intuitive and
easy-to-understand; (2) QA-decidable; (3) efficiently computable; (4) expressive
enough; and (5) suitable for an efficient implementation. In this regard, Datalog±

[6], the family of Datalog-based languages recently proposed for tractable QA,
is arousing increasing interest. This family, generalizing well known ontology
specification languages, is mainly based on Datalog∃, the natural extension of
Datalog [1] that allows ∃-quantified variables in rule heads. For example, the
rules ∃Y father(X,Y) ← person(X) and person(Y) ← father(X,Y) state that if
X is a person, then X must have a father Y, which has to be a person as well.
However, even if all known QA-decidable Datalog± languages enjoy the simplic-
ity of Datalog and are endowed with properties that are desired for ontology
languages, none of them fully satisfy conditions (1)–(5) above (see Section 5).
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In this work, we single out Shy, a new powerful, yet QA-decidable Datalog∃

class that combines positive aspects of different Datalog± languages. Concern-
ing properties (1)–(5) above, Shy: (1) inherits the simplicity and naturalness
of Datalog; (2) is QA-decidable; (3) is efficiently computable; (4) offers good
expressiveness strictly generalizing Datalog; and (5) is suitable for an efficient
implementation. From a technical viewpoint, our contribution is as follows:

– We define Shy, a subclass of Datalog∃ that preserves not only decidability but
also the same data (resp., combined) complexity of Datalog for unrestricted
conjunctive queries (resp., atomic queries).

– We show that Shy strictly encompasses both Datalog and Linear-Datalog∃

[6], and that it is uncomparable to all other known Datalog∃ classes.
– We design and implement a bottom-up evaluation strategy for Shy programs

inside the DLV system. Our computation strategy includes a number of op-
timizations resulting in DLV∃, a powerful reasoner over Shy programs. To
the best of our knowledge, DLV∃ is the first system supporting the standard
first-order semantics for unrestricted CQs with ∃-variables over ontologies
using advanced properties (some of these beyond AC0), such as, role transi-
tivity, role hierarchy, role inverse, and concept products [14].

– We perform an experimental analysis comparing DLV∃ with some state-of-
the-art systems for QA. The results demonstrate that DLV∃ is the most effec-
tive system for QA in dynamic environments where the ontology frequently
changes making pre-computations and static optimizations inapplicable.

2 The Framework

This section, after introducing Datalog∃ programs and CQs, equips such struc-
tures with a formal semantics and defines the query answering problem.

Preliminaries. Throughout this paper we denote by ∆C , ∆N and ∆V , count-
ably infinite domains of terms called constants, nulls and variables, respectively;
by ∆, the union of these three domains; by t, a generic term in ∆; by X and Y,
variables; by X and Y, sets of variables; by Π an alphabet of predicate symbols
each of which, say p, has a fixed nonnegative arity; by a and b, atoms being ex-
pressions of the form p(t1, . . . , tk), where p is a predicate symbol, and t1, . . . , tk is
a tuple of terms. For a formal structure ς containing atoms, atoms(ς) denotes the
set of atoms in ς , and dom(ς) denotes the set of terms from ∆C ∪∆N occurring
in atoms(ς). If X is the set of all variables of ς , then ς is also denoted by ς[X]. A
structure ς[∅] is called ground. If T ⊆ ∆ and T 6= ∅, then base(T ) denotes the set
of all atoms that can be formed with predicate symbols in Π and terms from T .

A substitution is a mapping σ : ∆V → ∆C ∪ ∆N . For a set X ⊆ ∆V , the
application of σ to X is the set σ(X) = {σ(X) | X ∈ X}. Moreover, the restriction
of σ to X, is the substitution σ|X from X to ∆C ∪∆N s.t. σ′(X) = σ(X) for each
X ∈ X. For an atom a = p(t1, . . . , tk), σ(a) denotes the atom obtained from a by
replacing each variable X of a with σ(X). For a structure ς containing atoms, we
denote by σ(ς) the structure obtained by replacing each atom a of ς with σ(a).
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Programs and Queries. A rule r is a finite expression of the form:

∀X∃Y atom[X′∪Y] ← conj[X] (1)

where X and Y are disjoint sets of variables (next called ∀-variables and ∃-
variables, respectively), and X′ ⊆ X. In the following, head(r) = atom[X′∪Y] and
body(r) = atoms(conj[X]). If body(r) = ∅, then r is also called fact. A Datalog∃

program P is a finite set of rules. We denote by data(P ) all the atoms constituting
the ground facts of P .

Example 1. Let P-Jungle be a Datalog∃ program including the following rules:

r1 : ∃Z pursues(Z,X) ← escapes(X)
r2 : hungry(Y) ← pursues(Y,X), fast(X)
r3 : pursues(X,Y) ← pursues(X,W), prey(Y)
r4 : afraid(X) ← pursues(Y,X), hungry(Y), strongerThan(Y,X).

The program describes a funny scenario where an escaping, yet fast animal X may
induce other animals to be afraid. Data for P-Jungle could be escapes(gazelle),
fast(gazelle), prey(antelope), strongerThan(lion,antelope), and possibly also
pursues(lion,gazelle). We will use P-Jungle as a running example. ⊓⊔

Given a Datalog∃ program P , a conjunctive query (CQ) q over P is a first-
order (FO) expression of the form ∃Y conj[X∪Y], where X are its free variables.
To highlight the free variables, we write q(X) instead of q. Query q is a Boolean
CQ (BCQ) if X = ∅. Moreover, q is called atomic if conj is an atom.

Example 2. Animals pursed by a lion and stronger than some other animal can
be retrieved by means of a CQ ∃Y pursues(lion,X), strongerThan(X,Y). ⊓⊔

Semantics and Query Answering. Given a set S of atoms and an atom a,
we say S entails a (S |= a for short) if there is a substitution σ s.t. σ(a) ∈
S. Let P ∈ Datalog∃. A set M ⊆ base(∆C ∪ ∆N ) is a model for P (M |=
P ) if M |= σ|X(head(r)) for each r ∈ P of the form (1) and substitution σ
s.t. σ(body(r)) ⊆ M . Let mods(P ) denote the set of models of P . Let M ∈
mods(P ). A BCQ q is true w.r.t. M (M |= q) if there is a substitution σ s.t.
σ(atoms(q)) ⊆ M . Analogously, the answer of a CQ q(X) w.r.t. M is the set
ans(q,M) = {σ|X : σ is a substitution ∧ M |= σ|X(q)}. The answer of a CQ q(X)
w.r.t. a program P is the set ansP (q) = {σ : σ ∈ ans(q,M) ∀M ∈ mods(P )}. Note
that for a BCQ q either ansP (q) = {σ|∅} or ansP (q) = ∅. In the former case we
say that q is (cautiously) true w.r.t. P , denoted by P |= q.

Let C be a class of Datalog∃ programs. Query answering (QA) over C is the
following decision problem: Given a program P in C and a BCQ q, determine
whether P |= q holds. Class C is called QA-decidable if QA over C is decidable. We
observe that computing ansP (q) for a CQ q(X) is Turing-reducible to QA. In fact,
ansP (q) is the set of substitutions σ s.t. the BCQ σ(q) is true w.r.t. P . However,
since σ ∈ ansP (q) implies σ(X) ⊆ dom(P ), only finitely many substitutions have
to be considered [13].
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Let P be a Datalog∃ program. It is well-known that QA can be carried out by
using a universal model of P , namely a model U of P s.t., for each BCQ q, P |= q
iff U |= q [13]. A well-known procedure for constructing such a model U is the
chase [17]. Intuitively, the chase first sets U to data(P ). Next, it exhaustively
repairs rules that are not satisfied in U by adding to U new atoms having “fresh”
nulls in the positions of ∃-variables. Eventually, it terminates if U |= P . (See [19]
for a formal definition.) Unfortunately, although the chase always constructs a
(possibly infinite) universal model of P , QA remains undecidable in general [13].

3 Shy: A novel QA-decidable Datalog∃ class

The key idea behind this class intuitively relays on the following shyness prop-
erty: During a chase-run on a Shy program P , nulls propagated body-to-head
do not meet each other to join. In this regard, given a Datalog∃ program P , to
detect whether a chase-run on P might produce some atom containing a null
at a given position, we define the null-set of a position in an atom. More pre-
cisely, ϕr

X denotes the “representative” null introduced (during a chase-run on
P ) due to the ∃-variable X of the rule r ∈ P . (If (r, X) 6= (r′, X′), then ϕr

X 6= ϕr′

X′ .)
Let a be an atom, and X a variable occurring in a at position i. The null-set of
position i in a w.r.t. P , denoted by nullset(i, a), is inductively defined as follows.
If a is the head atom of some rule r ∈ P , then nullset(i, a) is: (1) either the set
{ϕr

X}, if X is ∃-quantified in r; or (2) the intersection of every nullset(j,b) s.t.
b ∈ body(r) and X occurs at position j in b, if X is ∀-quantified in r. If a is not a
head atom, then nullset(i, a) is the union of nullset(i, head(r)) for each r ∈ P s.t.
pred(head(r)) = pred(a). A representative null ϕ invades a variable X that occurs
at position i in an atom a if ϕ is contained in nullset(i, a). A variable X occurring
in a conjunction of atoms conj is attacked in conj by a null ϕ if each occurrence
of X in conj is invaded by ϕ. A variable X is protected in conj if it is attacked
by no null. We are now ready to define the new Datalog∃ class.

Definition 1 ([19]). Let Shy denote the class of all Datalog∃ programs con-
taining only shy rules, where a rule r is called shy w.r.t. a program P if the
following conditions are satisfied: (i) If a variable occurs in more than one body
atom, then this variable is protected in body(r); (ii) If two distinct ∀-variables
are not protected in body(r) but occur both in head(r) and in two different body
atoms, then they are not attacked by the same null. ⊓⊔

Resuming program P-Jungle of Example 1 we now prove its shyness. Let
a1, . . . ,a12 be the atoms of rules r1–r4 in left-to-right/top-to-bottom order, and
nullset(1, a1) be {ϕr1

Z }. First, we propagate ϕr1
Z (head-to-body) to nullset(1, a4),

nullset(1, a7), and nullset(1, a10). Next, this null is propagated (body-to-head)
from a4, a7 and a3 to nullset(1, a3), nullset(1, a6) and nullset(1, a11), respectively.
Finally, we observe that rules r1–r3 are trivially shy, and that r4 also is because
variable Y is not invaded in a12 even if ϕr1

Z invades Y both in a10 and a11.
According to Definition 1, we observe that a program is Shy regardless its

ground facts. Finally, we mention notable computational properties of this class.
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Theorem 1 ([19]). Checking whether a program P is shy is decidable. In par-
ticular, it is doable in polynomial-time.

Theorem 2 ([19]). QA over Shy is decidable. In particular, it is P-complete
in data complexity for unrestricted conjunctive queries, and EXP-complete in
combined complexity for atomic queries.

4 Implementation and Experiments

We implemented a system, called DLV∃, that computes a very succinct set of
atoms for answering CQs over Shy programs. Let P be a Shy program and q be a
CQ. First, ∃-variables in rule heads are managed by skolemization. In particular,
every rule r ∈ P is skolemized, and skolemized terms are interpreted as functional
symbols [8] within DLV∃. Next, the system singles out the set of predicates that
are relevant for answering q by recursively traversing top-down (head-to-body)
the rules in P , starting from the query predicates. This information is used
to filter out, at loading time, the facts belonging to predicates irrelevant for
answering the input query. At this point, the computation is further optimized
rewriting P by a variant of the well-known Magic-Sets technique [11,3], that we
adapted to Datalog∃.

We carried out an experimental analysis considering the well-known LUBM
benchmark (see http://swat.cse.lehigh.edu/projects/lubm/). It refers to
a university domain and includes a synthetic data generator, which we used to
generate three increasing data sets, namely lubm-10, lubm-30 and lubm-50. LUBM
incorporates a set of 14 queries referred to as q1–q14. Tests were performed on an
Intel Xeon X3430, 2.4 GHz, with 4 Gb Ram, running Linux Operating System.
For each query, we allowed a maximum running time of 7200 seconds and a
maximum memory usage of 2 Gb.

We compared DLV∃ with three state-of-the-art reasoners called Pellet [25],
OWLIM-SE [4] and OWLIM-Lite [4]. Results are reported in Table 1, where

Table 1. Systems comparison: running time (sec.) and average time (G.Avg)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 qall G.Avg

lubm-10
DLV∃ 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 17 2.87
Pellet 82 84 84 82 80 88 81 89 95 82 82 89 82 84 27 84.48
OWLIM-Lite 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 33 53.31
OWLIM-SE 105 105 105 105 105 105 105 106 106 105 105 105 105 105 105 105.14

lubm-30
DLV∃ 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 55 9.70
Pellet – – – – – – – – – – – – – – – –
OWLIM-Lite 107 – 107 106 107 106 – 528 – 107 106 106 107 106 106 123.18
OWLIM-SE 323 328 323 323 323 323 323 323 326 323 323 323 323 323 323 323.57

lubm-50
DLV∃ 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 93 16.67
Pellet – – – – – – – – – – – – – – – –
OWLIM-Lite 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 187 223.79
OWLIM-SE 536 547 536 536 536 537 536 536 542 536 536 536 536 537 536 537.35
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times include the total time required for QA. We measured the total time, in-
cluding data parsing and loading, because we are interested in ontology reason-
ing contexts where data and knowledge rapidly vary, even within hours. DLV∃

significantly outperforms all other systems in all tested queries and data sets.
Comparing the other systems, OWLIM-Lite is in general faster than Pellet and
OWLIM-SE. Pellet is faster than OWLIM-SE on lubm-10, but it answered no
tested queries in the allotted time on lubm-30 and lubm-50. Finally, column qall
shows the time taken by the systems to perform fact inference, namely to com-
pute all atomic consequences required to answer any atomic query. Interestingly,
even if DLV∃ is specifically designed for QA over frequently changing ontologies,
it outperformed the competitors also in performing fact inference. Indeed, DLV∃

took about 17% and 51% of the time taken by OWLIM-SE and OWLIM-Lite.

5 Related Work and Discussion

Comparison with the literature reveals that Shy offers the best balance between
expressivity and complexity among all known QA-decidable Datalog∃ classes re-
laying on the three main paradigms called weak-acyclicity [13], guardness [5] and
stickiness [7]. Figure 1 provides a taxonomy of the most representative of these
classes. In particular, for each pair C1 and C2 of classes, there is a direct path from
C1 to C2 iff C1 ⊂ C2; also, C1 and C2 are not linked by any directed path iff they are
uncomparable [19]. Table 2 summarizes the complexity of QA over these classes
[19]. In both diagrams, only Datalog is intended to be ∃-free. In fact, among
these classes, Shy is the only one supporting advanced, yet relevant properties
such as role-transitivity and concept-product [24] (besides standard ontological
properties such as role-hierarchy, role-inverse, concept-hierarchy). More specifi-
cally, even if Weakly-Guarded [5] encompasses and generalizes both Datalog and
Linear [5] as Shy, it has untractable data complexity and no implementation.
Weakly-Acyclic [13] and Guarded [5] are tractable (although they suffer of higher
combined complexity than Shy) but the former does not include Linear (even
the basic “father-person” ontology cannot be represented), while the latter does
not include Datalog and supports neither role-transitivity nor concept-product.
Moreover, no efficient implementation of Guarded has been found so far since
the natural termination condition on Guarded programs requires the generation
of a huge set of atoms for answering CQs. Sticky and Sticky-Join [7] are suitable
for an efficient implementation and capture some light-weight DL properties but,

Fig. 1. Taxonomy of the most attractive QA-decidable Datalog∃ classes
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Class C Data Complexity Combined Complexity

Weakly-Guarded EXP-complete 2EXP-complete
Guarded, Weakly-Acyclic P-complete 2EXP-complete

Datalog, Shy P-complete EXP-complete
Sticky, Sticky-Join in AC0 EXP-complete

Linear in AC0 PSPACE-complete

Table 2. Complexity of atomic query answering

since they do not generalize Datalog, they cannot express important KR features
such as role-transitivity.

Regarding related systems, to the best of our knowledge, the only one di-
rectly supporting ∃-quantifiers in Datalog is Nyaya [12], which performs QA
over Linear-Datalog∃. (We could not compare DLV∃ with Nyaya since it still
provides no API for data loading and querying.) Concerning ontology reasoners,
we mention QuOnto [2], Presto [23], Quest [21], Mastro [10] and OBDA [22]
which rewrite axioms and queries to SQL. Such systems support standard FO
semantics for unrestricted CQs, but the expressivity of their languages is lim-
ited to AC0 and excludes, e.g., transitivity property or concept products. The
systems FaCT++ [26], RacerPro [15], Pellet [25] and HermiT [20] materialize
all inferences at loading-time, implement very expressive description logics, but
they do not support the standard FO semantics for CQs [14]. Actually, the Pel-
let system enables first-order CQs but only in the acyclic case. OWLIM [4] and
KAON2 [16] perform full-materialization and implement expressive DLs, but
they still miss to support the standard FO semantics for CQs [14].

Summing up, it turns out that DLV∃ is the first system supporting the stan-
dard FO semantics for unrestricted CQs with ∃-variables over ontologies using
advanced properties (even beyond AC0), such as, role transitivity, role hierar-
chy, role inverse, and concept products. The experiments confirm the efficiency
of DLV∃, which constitutes a powerful system for a fully-declarative QA.
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