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Abstract. Supporting aggregates in recursive logic rules is a crucial
long-standing problem for Datalog. To solve this problem, we propose
Datalog?® that supports queries and reasoning on the number of dis-
tinct occurrences satisfying given goals, or conjunction of goals, in rules.
By using a generalized notion of multiplicity called frequency, we show
that graph queries can be easily expressed in Datalog?®. This simple ex-
tension preserves all the desirable semantic and computational properties
of logic-based languages, while significantly extending their application
range to support efficiently page-rank, and social-network queries.

1 Introduction

Due to the emergence of many important application areas we are now expe-
riencing a major resurgence of interest in Datalog for parallel and distributed
programming [1] and for expressing and supporting subsets of Description Logic
for ontological queries [2]. Other lines of work are exploring execution of recur-
sive queries in the MapReduce framework [3] and in Data Stream Management
Systems [4]. The abundance of new applications underscores the need to tackle
and solve crucial Datalog problems that remain unsolved and restrict its effec-
tiveness by e.g., disallowing the use of aggregates in recursion. This problem is
very challenging since basic aggregates violate the requirement of monotonicity
on which the least fixpoint semantics of Datalog is based.

Related Work  The notion of stratification with respect to negation and ag-
gregates is simple for users to master [5, 6]. Unfortunately, stratification (into a
finite number of strata) is too restrictive and cannot support the efficient formu-
lation of many graph optimization algorithms, which typically require the use of
extrema and counting in recursion [7].

The importance of optimization and graph applications have motivated much
research work seeking to solve these problems. These proposals follow three main
approaches: i) supporting infinite levels of stratifications using Datalog;s pro-
grams [6]; i¢) attempting to preserve the fixpoint computation via continuous
aggregates and non-deterministic choice constructs [8,9], and #ii) seeking to
achieve monotonicity by using partial orders that are more general than set-
containment [10]. These past solutions had limited generality and often required
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sophisticated users and compilers. We next introduce Datalog!™ which does not
suffer from these problems.

In the next section we introduce Datalog? via simple examples. In Section 3
we introduce constructs that support facts and predicates having multiple occur-
rences and, in Section 4, we review important graph applications. In Section 5,
we show how to implement Datalog’® efficiently.

2 Datalogf® by Example

Consider, for instance a database of facts as follows:
person(adam). person(marc). person(jerry). person(tom).
son(marc, tom). son(marc, jerry). son(tom, eddy). son(tom,adam). son(tom, john).

The following rule defines fathers with at least two sons:
twosons(X) + person(X), son(X, Y1), son(X,Y2),Y2 # Y1.

Datalog!™® allows the following equivalent expression for our twosons rule:
twosons(X) < person(X), 2:[son(X,Y)].

The goal, I: [b-expression], is called a frequency support goal (or F'S-Goal),
and “I” is a positive integer, called Running-FS clause. The expression in the
bracket is called b-expression, and can either consists of a single positive predicate
or a conjunction of positive predicates [11]. The convenience of FS-goals is clear
if we want to find people with many sons:

sixsons(X) < person(X), 6:[son(X,Y)].

will retrieve all persons who have at least six sons. An equivalent rule can be
expressed using the # operator. Indeed we can start as follows:

sixsons(X) < person(X), son(X,Y1),5:[son(X,Y2),Y2 # Y1].

and proceed inductively, and obtain a rule containing six goals son(X,Y;), where
j=1,...,6 and 6 x5 goals saying, that every Y be different from every other Y. If
we are interested in links between web pages, which could easily be thousands, it
becomes clear that the approach based on # is totally impractical, and without
FS-goals we would need a COUNT aggregate. Yet, aggregates bring in the curse of
non-monotonicity and recursion becomes a problem. At the semantic level, our
Datalog!™® rules can instead be viewed as standard Horn clauses whereby the
standard monotonicity-based semantics of negation-free Datalog is preserved.
We now clarify the scope of variables in Datalog”®. Predicate friend(X,Y)
denotes that person X views person Y as a friend (no assumption of symmetry):

Ezample 1. Pairs of friends (F1, F2) where F1 and F2 have at least 3 friends:

popularpair(X,Y) < friend(X,Y),3:[friend(X,V1)],3:[friend(Y,V2)].

Ezample 2. Pairs of friends (F1,F2) who have at least three friends in common

sharethree(X,Y) < friend(X,Y),3:[friend(X, V), friend(Y,V)].
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There are two kinds of variables in rules with FS-goals. The first are those,
such as X and Y in Example 2, that appear in the head of the rule or in some goal
outside the b-expression. These will be called global variables. They are basically
the universally qualified variables of the standard Horn Clauses, and have the
whole rule as scope. Variables X and Y in Example 1 are global for that rule.

Other variables only appear in b-expressions and their scope is local to the b-
expression, where they appear (e.g. V1 and V2 in Example 1, and V in Example
2). Thus, KJ...] can be viewed as an existential declaration of local variables
under the following constraint: there exist at least K assignments of the local
variables that satisfy the b-expression. Example 2 states that there exist at least
3 distinct V occurrences each denoting a person who is a friend to both X and
Y. The scope of existential variables is local to the b-expression: in Example 1
replacing V1 and V2 with V would not change the meaning of our rule. Let us
now express that an assistant professor to be advanced to associate professor
should have an H-index of at least 13:

Ezxample 3. Our candidate must have authored at least 13 papers each of which
has been referenced at least 13 times. The database table author(Author, Pno)
lists all papers (co-)authored by a person, while the atom refer(PnFrom,PnTo)
denotes that paper PnFrom contains a reference to paper PnTo.
atleast13(PnTo) + 13:[refer(PnFrom,PnTo)].
hindex13(Author) + 13:[author(Author,Pno), atleast13(Pno)].

These simple examples could also be expressed using the count aggregate. Yet,
count and other aggregates are non-monotonic with respect to the partial order-
ing defined by set containment, and cannot be used in recursive rules. Indeed, the
meaning and efficient implementation of Datalog programs with recursive rules
are based on their least fixpoint semantics*, which is only guaranteed to exist
when the program rules define mononotonic mappings. Now, continuous count is
obviously monotonic with respect to set-containment. This is formally proven in
[11] by rewriting the running FS-construct with equivalent, although inefficient,
Horn clauses (that use list and thus we will avoid in the actual implementation,
as shown in Section 5).

Final-FS construct and Stratification. The semantics of Datalogfs [11]
allows to use variables rather than constants in the specification of FS goals.
This is useful, for instance, to find the actual number of sons a person has:

Ezxample 4. How many sons does a person have?

csons(PName,N) + person(PName),N: [son(PName, Sname)], morethan(PName, N).
morethan(PName, N) < N1:[son(PName, )],N1 > N.

Thus csons must belong to a stratum that is strictly higher than son, whereas
with respect to person it could be in the same stratum or in the one above it.
The need to find the maximum value satisfying a running-FS clause is so common
that we provide a construct called Final-F'S and denoted by the operator =!.

4 Naturally, by “least fixpoint” of a program, we mean “least fixpoint of its immediate
consequence operator” [12].
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Ezample 5. How many sons does a person have?
csons(Name, N) + person(Name), N =![son(Name, _)].

The formal semantics of the Final-FS construct is defined as the rewriting of
Example 5 into Example 4, which makes use of negation, whereby we will require
that our Datalog!® programs be stratified w.r.t. Final-FS goals.

Recursive Datalog®S. Consider the following example:
Ezxample 6. Some people will come to the party for sure. Others will also come
once they learn that three or more of their friends will come.

willcome(X) + sure(X).
willcome(Y) « 3:[friend(Y,X),willcome(X)].

One person might be more timid than another, and different people could
require a different number of friends before they also join the party. Thus, if
requires(Person, PNumber) denotes the number of friends required by a person,
where PNumber must be a positive integer (whereas sure denotes people who will
come even if none of their friends will), we have the following program:

Example 7. A person will join the party if a sufficient number of friends join.

join(X) + sure(X).
join(Y) < requires(Y,K),K:[friend(Y,X), join(X)].

3 Multi-Occuring Predicates

As discussed in [10], there are numerous examples where it is desirable that cer-
tain predicates are counted as providing a support level greater than one. For
instance, we might use the following representation to denote that the paper with
DBLP identifier “MousaviZ11” is currently cited in six papers: ref(“Mousaviz11”):
6. Thus, Pno = “MousaviZ11” contributes with count six to the b-expression of
the rule:

Ezample 8. Total reference count for an author.

tref(Authr):N « N:[author(Authr, Pno), ref(Pno)].

The clauses ":6" and ":N" used in the above fact and rule head will be called
FS-Assert clauses. The semantics of programs P with frequency assert clauses is
defined by exzpanding it into its P equivalent, which is obtained as follows: Each
rule in P with head q(X1,...,Xn):K < Body is replaced by

g(X1,...,Xn,J) < lessthan(J,K),Body.

where lessthan(J,K) is a recursive predicate that generates all positive in-
tegers up to K, included. Thus, we have that, as a result of this expansion,
ref(“MousaviZ11”):6 contributes with six to the reference count of each author
of that paper. A property of frequency statements is that, when multiple state-
ments hold for the same fact only the largest value is significant, the others are
subsumed and can be ignored.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



An Extension of Datalog for Graph Queries 181

Bill-of-materials (BOM) applications represent a well-known example of the
need for recursive queries. Our database might contain records assbl(Part, Subpart, Qty)
which, for each part number, gives the immediate subparts used in its assem-
bly and their quantity (e.g. a bicycle has 1 frame and 2 wheels as immediate
subparts). At the bottom of BOM DAG, we find the basic parts that are pur-
chased from external suppliers and described by basic(Pno,Days) denoting the
days needed to obtain that basic part. Several interesting BOM applications are
naturally expressed by combining aggregates and recursion, as follows:

Ezxample 9. How many basic parts does an assembled part contain?

cassb(Part, Sub):Qty < assbl(Part,Sub,Qty).
cbasic(Pno):1 <+ basic(Pno,.).

cbasic(Part):K < K:[cassb(Part, Sub), cbasic(Sub)].
cntbasic(Prt,C) « C =![cbasic(Prt)].

The count of basic parts is not retrieved using the goal N: [cbasic(frame)]
since this will return all positive integers up to the max value. Goal N =![cbasic(frame)]
is used instead as this returns the exact count of the basic subparts.

Example 10. How many days until delivery?

delivery(Pno):Days <  basic(Pno,Days).
delivery(Part):Days «+  assb(Part,Sub,_),Days:[delivery(Sub)].
actualDays(Part,CDays) < CDays =![delivery(Part)].

For each assembled part, we find each basic subpart along with the number
of days this takes to arrive. Observe that the argument Pno is projected out, and
only the number of days associated with it is retained, whereby the maximum
of the number of days required by any basic part is derived.

4 Advanced Graph Applications

We now show some examples that use Datalog?® with positive rational numbers.
As explained in more details in [11], we can assume that we use rational numbers
with the same large denominator, and thus easily derive equivalent Datalog!™®
rules for their numerators.

Diffusion Models. The Jackson-Yariv Diffusion Model (JYDM) [13] provides a
powerful abstraction on how social structures influence the spread of a behavior
and trends in Social Networks. We use the JDYM to understand how a tweet will
spread in the Twitter network. Let followd(X,Y) indicate that user X is followed
by user Y and coeff(X,C) means that C is the coefficient of how susceptible to
change node X is. Predicate b(X) denotes, if true, that node X will retweet. We
assume that an agent, source(X), first posts the tweet and starts its diffusion.

Ezample 11. Modeling a retweet in Datalog™.

b(X) + source(X).
b(X) ¢ coeff(X,C), K>1/C, K:[follwd(Y,X),b(Y)].
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The last rule finds each node X for which the condition K x C > 1 holds by
testing the equivalent condition K > 1/C. When this is satisfied b(X) is set to
true. The answer to the query ?b(Y) will thus list all the users that propagated
the tweet that originated from the node specified by source.

followd(u1,u2
followd(u1,u3
followd(u2,u4
followd(u3,u4

coeff(u2,1.08).  source(ul).
coeff(u3,0.60).
coeff(u4,1.15).

Fig. 1. Retweet modeling in Datalog?®.

Then, applying the program in Example 11 to the Twitter network in Figure 1
the following atoms are derived: b(uy ), b(us), b(us).

Markov Chains and Page Rank. A Markov chain is represented by the
transition matrix W of s X s components where w;; is the probability to go from
state ¢ to state j in one step. A Markov chain is irreducible if for each pair of
states 4, j, the probabilities to go from ¢ to j and from j to ¢ in one or more steps
is greater than zero.

Computing stabilized probabilities of a Markov chain has many real-world
applications, such as estimating the distribution of population in a region, and
determining the Page Rank of web nodes. Let P be a vector of stabilized probabil-
ities of cardinality s, the equilibrium condition in terms of matrices is: P = W - P.

Computing this fixpoint is far from trivial and irreducible chains can be
modeled quite naturally in Datalogf™®. If p_state(X) : K denotes that K is the
probability of node X,1 < X < s, and wmatrix(Y,X) : W denotes that the arc
from Y to X has weight W, then we compute the fixpoint as follows:

pstate(X):K<+  K:[p_state(Y),wmatrix(Y,X)].
wmatrix(1,1):wyq.
wmatrix(1,2):wi,.

wmatrix(s,s):wss.

It is important to notice that each fixpoint of such program is an equilibrium
P = W - P of the Markov Chain represented by matrix W. In order to find a
non trivial fixpoint (# 0) for program P, we add baseline facts i.e. a set of facts
p-state(1) : 0.1. p_state(2):0.1. ... p_state(s): 0.1, that guarantee that
the least fixpoint contains facts with predicate p_state. Such program is called
Pbl and is a Datalog?s program for which we can compute the least fixpoint
efficiently. Moreover, every fixpoint of Pbl is also a fixpoint for P. Indeed, for
any interpretation I that contains all the baseline facts, the application of either
operators produce the same result: i.e., Tp(I) = Tpy(I). Therefore any fixpoint
of T'p that contains all the baseline facts is also a fixpoint for Tpy; and vice-versa.
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But since, by its very definition, the least model of Pbl contains all the baseline
facts, we have that every fixpoint for Tpy; is also a fixpoint for Tp. The opposite
of course is not true since the null fixpoint of Tp, and possibly others, are not
fixpoint for T'py;. However, if Tp has a fixpoint that is positive at all nodes, then
by multiplying the frequency at all nodes by a large enough finite constant, we
obtain a fixpoint for Tp that contains all the baseline facts of Tpy;. Since, for
each irreducible Markov chain there exists a not trivial fixpoint, also Tp has
one that is not null at every node, then there exists a finite fixpoint for Tpy;.
Therefore, the least fixpoint for Tpy; is finite. That is:

Theorem 1.

— The least fixpoint of the baseline Datalogt® program that models an irre-
ducible Markov chain is finite.

— Fvery non-null solution of an irreducible Markov chain can be obtained by
scaling the least fixpoint solution of its baseline Datalog"™ model.

In summary, while there has been a significant amount of previous work on
Markov chains, the use of Datalog’® has provides us with a model and a simple
computation algorithm which is valid for all irreducible Markov chains, including
periodic ones.

5 Efficient Implementation

The greater expressive power of Datalog?”® combines with its amenability to
efficient implementation via the following three optimization steps: (i) differential
fixpoint, (ii) Magic Sets, and (iii) Max-optimization. Since (ii) is basically the
same as that in Datalog [11], we will discuss here (i) and (iii).

In Datalog®® the differential fixpoint step is applied to recursive rules after
they are transformed to ensure that every goal in the b-expression also appears
outside the bracket. To satisfy this requirement, the second rule in Example 7 is
transformed by repeating outside the bracket the two clauses inside the bracket,
producing the following rule:

join(Y) < requires(Y,K), friend(Y,X1), join(X1),K:[friend(Y,X), join(X)].

Since we have renamed the local variables (X for the case at hand), and since
K > 1, this transformation does not change the meaning of the rule. However it
greatly simplifies its symbolic differentiation since the bracketed expression can
now be treated as a constant. Thus the rule becomes linear and its § version is:

djoin(Y) < requires(Y,K), friend(Y,X1),djoin(X1),K: [friend(Y,X), join(X)].

The Max-optimization transforms the delta rules so obtained by replacing the
running FS-construct with the final FS-construct. For instance, we start by
rewriting the delta rule above into the following one that preserves its oper-
ational semantics:

djoin(Y) < requires(Y,K1),friend(Y,X1),0join(X1),
K:[friend(Y,X), join(X)],K > K1.
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Now, we can replace the running-FS K: [...] by the final-FS K =![.. ] and still
preserve the operational semantics of the rule, due to the fact that the rule only
uses K in monotonic functions and predicates (e.g., predicates that if they are
true for K they are also true for every value larger than X ). This optimization
would not be possible if the body uses some non-monotonic predicate, e.g., a
goal that checks that K is even. A similar situation occurs in Examples 9, where
instead of the running-FS construct in the recursive § rules we can use the final-
FS construct. Indeed the values produced by the former satisfy the external
goal C =l![cbasic(part)] iff the values produced by the latter do. Again this
equivalence is due to the monotoniciy of the arithmetic and boolean predicates
used in the rule. Such monotonicity holds in all examples given in this paper
and the many examples of practical interest discussed in [11].

6 Conclusion

In this paper, we studied the important problem of allowing aggregates in re-
cursive Datalog rules, and proposed a solution of surprising simplicity for this
long-standing challenge. Our Datalog’® approach is based on using continuous
aggregate-like functions that allow us to query and reason on the frequency with
which predicates and conjunctions of predicates occur.
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