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Abstract. This paper reports on recent findings regarding diversity queries over
objects embedded in a low-dimensional vector space. Among the many contexts
of interest, we mention spatial Web objects, which are abundant in location-based
services that let users attach content to places. Typical queries aim at retrieving
the best set of relevant objects that are well distributed over a region of interest.
Existing methods for answering diversified top-k queries are too costly, as they
evaluate diversity by accessing and scanning all relevant objects, even if only a
small subset thereof is needed. Our proposal, named SPP, is an algorithm that,
while finding exactly the same result as MMR (one of the most popular diversifica-
tion algorithms), does not require retrieving all the relevant objects and, indeed,
minimizes the number of accessed objects. Experiments confirm that SPP saves
a significant amount of accesses while incurring a very low computational over-
head.

1 Introduction

Geo-referenced data are becoming more and more available on the Web, especially af-
ter the advent of location-based services, whereby users can create content attached to
places. Web spatial objects are also found in real estate directories, local news aggrega-
tors, image sharing sites, and travel services. Queries that require the uniform coverage
of a region through spatial scattering of results are very common. An example is that of
a user moving to a new city who wants an overview of real estate offers that meet some
relevance criterion (e.g., price) and cover most neighborhoods.

In this paper, we address the problem of answering top-k diversity queries over on-
line data sources covering a region of interest by presenting a synthesis of the results
described in [6]. We assume that objects are represented in a vector space and can be
fetched through interfaces, common for Web data sources, granting sorted access ei-
ther by relevance (e.g., an object property or the degree of match with the query) or
by distance from a given point. Our objective is to improve performance of diversified
query processing by accessing only a small number of objects that guarantee to find
the best result set in terms of both relevance and diversity. This is in contrast with clas-
sical diversification techniques, which access all the objects first, and then choose the
best subset of diversified objects. As an example, consider a real estate query: a sam-
ple search in a commercial service for flats in London between £200,000 and £300,000
returned 60,000+ results; if the user wants to browse just a few dozens of them in di-
verse neighborhoods, we should access and present a number of objects proportional
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to the user’s wishes, scattered throughout the London region, without accessing all the
60,000+ relevant flats. In addition, we rely solely on the presence of sorted access meth-
ods based on relevance and distance, without requiring the knowledge of the specific
index structures being used, as these typically reside on remote third-party services.

Top-k diversity queries over a vector space require a mix of techniques from top-k
query processing and result diversification. As in top-k query processing [9, 11], the
cost model of access methods requires minimizing the number of fetched objects. To
this end, a threshold (upper bound) on the value of an objective function that quanti-
fies both score and diversity is maintained. As more candidate objects are accessed via
probe queries, the upper bound decreases until the guarantee is reached that no unseen
object can lead to a value of the objective function better than the one determined by
the already retrieved objects. Unlike in top-k query processing, the objective function of
diversity queries cannot be computed on individual objects, as it uses a diversity mea-
sure (e.g., spatial scatter) that requires comparing the next object with the previously
ranked ones. Existing diversification methods [2, 7] solve the issue by comparing all
the relevant objects (i.e., the results of the user query) with the objects that have been
top-ranked so far, thus materializing and scanning all of them several times [2].

We propose a novel approach, which integrates the notion of probe queries into the
framework of result diversification, providing on-the-fly construction of top-k result
sets that are both relevant and diverse, by using only sorted access methods and without
fetching all relevant objects. Our approach works as follows. The top-k set is built
incrementally, adding each time the object that maximizes an objective function based
on both relevance and diversity. At each step, we probe the vector space by issuing
distance-based queries at suitable points, called probing locations, that are likely to lie
close to the best objects. We may alternatively use score-based access to retrieve objects
with high relevance. Based on the retrieved objects, we maintain an upper bound on
the value of the objective function that can be attained by using the unseen objects.
The currently best object is added to the set when the value of the objective function
determined by its inclusion is at least as high as the upper bound. Note that the choice of
probing location and the alternation of score-based and distance-based access (akin to a
pulling strategy [11]) exploits the geometry of the vector space. The proposed approach
introduces efficiency without compromising the quality of diversification wrt. the best
known general-purpose diversification algorithms.

2 Preliminaries

Consider a query q selecting a finite set O of objects. The relevance of an object o ∈ O
to q is represented by a score Sq(o) ∈ R. Let each object o also be associated with
a real-valued feature vector x(o) ∈ Rd, denoting characteristics of the object that can
be used to compute diversity. Then, diversity of two objects is expressed by a measure
δ : O ×O → R+, where the value 0 indicates maximum similarity.

LetN = |O| denote the cardinality of the setO, andOK ⊆ O a subset ofK objects
that are selected, e.g., to be presented to the user. We are interested in identifying a
subsetOK that is both relevant and diverse. The diversification problem, i.e., computing
the best subset O∗

K of O, can be expressed as an optimization problem as follows [7]:

O∗
K = argmax

OK⊆O,|OK|=K

F (OK ;Sq(·), δ(·, ·)) (1)
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Algorithm 1: MMR algorithm
Input: Set of objects O; result sizeK
Output: Selection OK fromO
Parameters: Initialization Strategy IS
1. OK := {IS.initialObject()};
2. while (|OK | < K )
3. o∗ := argmax

o∈O\OK

{
(1− λ)Sq(o) + λmino′∈OK

δ(o, o′)
}
;

4. OK := OK ∪ {o∗};
5. return OK ;

where F (·) is an objective function that takes into account both relevance and diversity.
Solving problem (1) is NP-hard [7] for various objective functions. Hence, the need for
approximate greedy algorithms, amongwhichMaximumMarginal Relevance (MMR) [2],
is one of the most popular. MMR implicitly adopts the following F (·):

F (OK) = (1− λ)
∑

o∈OK

Sq(o) + λ min
ou,ov∈OK

δ(ou, ov) (2)

where λ is a parameter in [0, 1] specifying the trade-off between relevance and diversity.
Algorithm 1 illustrates the details of MMR, which incrementally constructs OK by

adding, at each step, an object that is both relevant and distant from the already se-
lected objects. The initial object is chosen according to some initialization strategy IS;
typically, the object that maximizes Sq(·) is selected. The added object o∗ (line 3 of
Algorithm 1) maximizes the diversity-weighted score σ, defined as:

σ(o;OK) = (1 − λ)Sq(o) + λ min
o′∈OK

δ(o, o′) (3)

thereby maximizing also F (OK ∪ {o}).
The algorithms proposed for optimizing the MMR objective function assume that all

the N objects relevant to the query are retrieved and re-ranked so as to select the topK
diversified elements. Therefore, all such algorithms exhibit a complexity that depends
on N . For example, the overall time complexity of MMR is O(K2N).

3 Bounded Diversification with Sorted Access Methods

The diversification problem addressed in this paper assumes that the feature vectors of
the objects are contained in a finite boundary region. We consider two kinds of sorted
access methods for fetching the objects:

– Score-based access. The set O is accessed sequentially in decreasing order of
Sq(·), i.e., of relevance to the query.

– Distance-based access. The set O is accessed sequentially in increasing order
of δ(·,v), where v is an arbitrary vector in Rd called probing location. For example,
objects are retrieved by geographical distance wrt. a given point.

Bounded diversification problems are diversification problems where the objects lie
in a bounded region and can be accessed only by score or distance. We restrict our at-
tention to the class of MMR-correct algorithms, defined as those deterministic algorithms
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Algorithm 2: PBMMR(K,U)
Input: result sizeK; bounding region U
Output: Selection OK from the objects enclosed in U
Main vars: set P of retrieved objects; discarded region D; last score Slastq ;

upper bound τ ; top diversity-weighted score σ∗; top object o∗
Parameters: Init. Strategy IS; Pulling Strategy PS; Bounding Scheme BS
1. OK := {IS.initialObject()};
2. D := ∅; S last

q := 1; P := OK ;
3. while (|OK | < K )
4. τ := ∞; σ∗ = −∞;
5. if (P \ OK 6= ∅) then o∗ = argmax

o∈P\OK

σ(o;OK); σ∗ = σ(o∗;OK);

6. while (σ∗ < τ and D ⊂ U )
7. m := PS.chooseAccessMethod();
8. o := m.getNextObject();
9. P := P ∪ {o};
10. if (σ(o;OK) > σ∗) then σ∗ = σ(o;OK); o∗ := o;
11. (D, S last

q ) := m.updateDiscardedRegionAndScore(D, S last
q );

12. τ := BS.updateBound(P,D, S last
q );

13. OK := OK ∪ {o∗};
14. return OK ;

that select at each step exactly the same object as MMR, and thus output the same result
OMMR

K . A family of algorithms solving this problem is shown in Algorithm 2, which we
call Pull/Bound MMR (PBMMR), adapted from the Pull/Bound Rank Join template orig-
inally introduced for the rank join problem in [11]. The algorithm selects one object
per outermost iteration. The selection is made by keeping track of an upper bound
τ (computed via a bounding scheme BS) on the best diversity-weighted score attain-
able by visiting unseen objects, based on the region D of space already explored, the
best score possible S last

q , and the visited objects P . At each step of the exploration,
the chooseAccessMethod function of a given pulling strategy PS decides the access
method m to use for retrieving the next object (score-based or distance-based), in the
latter case also deciding which probing location to use, i.e., from which point in the
vector space to start returning objects in increasing order of distance.

Theorem 1. PBMMR is MMR-correct.

4 Space Partitioning and Probing

4.1 Probing Locations

We start the illustration of the SPP algorithm by discussing the policy for determining
the probing locations, i.e., the starting points used for distance-based access. Ideally,
each time a distance-based access is made, one should explore the region of space that
grants the highest chances to retrieve the object with the best diversity-weighted score.
To this end, at each of the K iterations of the algorithm (line 3), we fix the probing
locations at the most promising points of the unexplored space. Then, we use these
probing locations in the iterations of the inner loop (line 6), possibly querying the same
location multiple times with an increased search radius.
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Fig. 1. Voronoi diagrams for Example 1.

At each of the K main iterations, the most promising probing locations are points
that lie within the bounding region U and are as far as possible from all the objects
of the current selection Oℓ. Let X = {x(o) ∈ Rd|o ∈ Oℓ} denote the set of points
corresponding to the current selection Oℓ. Then, the probing locations can be defined
as the local maxima of the function f that expresses the distance of a point x ∈ U from
the closest object in the current selection: f(x) = miny∈X ‖x− y‖.

An effective procedure for determining probing locations when U is a bounded
polyhedron is provided by Theorem 2, which ensures that the local maxima of f(x) lie
in a subset of the vertices of the bounded Voronoi diagram Vor(X ,U) [3] of the points
X corresponding to the current selection Oℓ, obtained by restricting the conventional
Voronoi diagram Vor(X ) to the region U .

Theorem 2. If x∗ ∈ U is a local maximum of f(x) then, x∗ is a vertex of Vor(X ,U).

Theorem 2 allows us to efficiently find a superset of the local maxima by construct-
ing Vor(X ,U) and enumerating its vertices vu, u = 1, . . . , V . Vertices that are not local
maxima can be disregarded.

Example 1. The left graph of Figure 1 illustrates an example when d = 2 and ℓ = 5 ob-
jects have already been determined within a bounding rectangle U . The corresponding
points x1, . . . ,x5 define the Voronoi diagram Vor(X ). Note that C1 of x1 is bounded,
whereas all the other cells are unbounded. The corresponding boundedVoronoi diagram
Vor(X ,U) is represented in the middle graph of Figure 1. Vertices v1, v2, v3 and v4

correspond to the original vertices of U . Out of the four vertices of Vor(X ), only two are
retained (i.e., v5 and v6), as the other ones are outside U . The remaining vertices (v7 to
v12) are due to intersections between Vor(X ) and the edges of U . The shading indicates
the distance from the closest point in X , where brighter indicates larger distance. Such
a distance is maximized at the vertices, as confirmed by Theorem 2.

4.2 Bounding scheme

We now turn to the computation of the upper bound τ in a given running state. To exem-
plify a running state, the right graph of Figure 1 shows the discarded region D as a set
of hyperspheres (in red) enclosing the previously accessed objects (shown as light red
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discs with sizes proportional to the scores). Note that Vor(X ,U) and the corresponding
probing locations are updated each time a new selected object is added by PBMMR.

The unseen objects retrievable with the next distance-based access belong to the
set Z = U \ D, which leaves out each explored hypersphere Σu centered in vu, u =
1, . . . , V . Indeed, after an object at a distance ru is extracted from vu, no new object
can lie closer than that to vu. A tight upper bound can be found as follows

τ = (1− λ)S last
q + λmax

x∈Z
min
y∈X

‖x− y‖ (4)

Theorem 3 provides an effective computation procedure for (4).

Theorem 3. The pointx∗ ∈ Z that maximizes the minimum distance from all the points
in X is a vertex of the convex hull of Pi \ D, where Pi is one of the cells of Vor(X ,U).

Thanks to Theorem 3, τ as of (4) can be computed by enumerating the cells of
Vor(X ,U) and, for each cell diminished by D, the vertices of its convex hull. Equiva-
lently, in 2D, we can enumerate each vertex vu of Vor(X ,U), and find the intersections
of the circumference of Σu with the edges or other circumferences.

Example 2. With reference to Figure 1, let us consider v5. We have p5 = 3 vertices
(namely, v6, v8, and v9) connected to v5 through edges. The circumference Σ5 cen-
tered in v5 intersects such edges in three points: y51 , y52 , and y53 .

The appropriateness of the bounding scheme stems from tightness of the upper bound,
in the sense that the value of the bound can be achieved in some hypothetical contin-
uation of the instance being explored, i.e., for some assignment of admissible location
and score to the unseen objects.

Theorem 4. The bounding scheme (4) is tight.

4.3 Pulling strategy

The pulling strategy determines how to fetch the next object, alternating between distance-
based and score-based access (when available). The pulling strategy can be as simple
as a round-robin (RR) scheduling, whereby distance- and score-based access are alter-
nated, and probing locations are uniformly explored. Tightness of the bounding scheme
and a RR strategy are sufficient to guarantee a form of instance optimality. Let AVor

be the class of MMR-correct, deterministic bounded diversification algorithms that can
discover objects by both score-based and distance-based access using the vertices of
Vor(X ,U) as probing locations.
Theorem 5. Algorithm 2 with tight bounding scheme (4) and a RR pulling strategy is
instance-optimal wrt. AVor.

In order to further decrease sumDepths (i.e., the overall amount of accessed objects), a
potential adaptive (PA) pulling strategy can be devised so as to lower the upper bound
τ more quickly. PA works as follows: when a distance-based access is to be made, the
probing location vu∗ is selected with u∗ = argmax

u=1,...,V
τu. Conventionally, ties are broken

in favor of the probing location with the least depth, then the one with the least index in
1, . . . , V .
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Theorem 6. Let ARR andAPA be algorithms inAVor using tight bounding scheme (4)
with the RR and the PA pulling strategies, respectively. Then sumDepths(APA, I) ≤
sumDepths(ARR, I)forallboundeddiversificationproblemsI .

When both distance-based and score-based access are available, we seek the one
that reduces τ at a faster rate. To this end, we compute the partial derivatives of τ
wrt. the number of fetched objects. Let nS denote the number of objects retrieved by
means of score-based access, and nu, u = 1, . . . , V , the number of objects retrieved
by distance-based access from probing location vu. Score-based access is preferred
if

∣∣ ∂τ
∂nS

∣∣ >
∣∣∣ ∂τ
∂nu∗

∣∣∣. These partial derivatives can be either computed exactly if the
distribution is known, or approximated by using, e.g., linear predictors.

We define SPP as the instance of Algorithm 2 that uses the tight bounding scheme (4)
and the PA pulling strategy.

5 Related work

Result Set Diversification. A general formulation of diversification is introduced in
[7]. Existing approaches (surveyed in [5]) rerank relevant results to introduce diver-
sity. Unlike SPP, these approaches scan all the n candidate results. Diversification in
multiple dimensions is addressed in [4], where the problem is reduced to MMR by col-
lapsing diversity dimensions in one composite similarity function. The recent work [1]
examines diversity-aware search under the angle of performance. Unlike [1], our work
addresses diversification in a different scenario, where objects are embedded in a vector
space, and exploits the geometry in order to limit the number of accessed objects.

We have focused on algorithms that can extract, on the fly, the top k relevant and
diversified objects from data sources providing sorted access methods (by score or dis-
tance). This class of algorithms is very general and applies to all those cases where
extracting all the relevant objects and then scanning them for diversification is imprac-
tical (e.g., mobile queries). Many general-purpose diversification algorithms exist [15].
For some of these (e.g., Motley), the same formal apparatus as PBMMR is clearly appli-
cable. However, other algorithms described in [15] (e.g., GMC) fall outside the PBMMR
paradigm, in that they require knowing all the objects beforehand.

Spatial Diversification. Spatial diversification was originally introduced by [14].
The scattered ranking approach exploits the geometry of the metric space to reduce the
number of operations for creating the ranking; however, the proposed algorithms access
all theN relevant points. The experiment with Mechanical Turk in [13] shows that users
prefer spatially diversified rankings over undiversified ones.

Top-k Query Processing. The main design dimensions and tools for top-k queries
are surveyed in [8]. In [10], rank join is extended to objects in a d-dimensional space,
with the aim of finding the best combinations of objects with high score that are close
to a given point and to each other. The technique in [10] also uses geometry-driven
bounds, but for a different problem (rank join) and geometry than ours.

6 Conclusions and Future Work

We have addressed the problem of efficiently diversifying the results of top-k queries
over spatial objects contained in a bounded region when only sorted access methods
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based on distance and/or score are permitted. Our work on top-k has included the fol-
lowing contributions: i) Bounded diversification with sorted access methods is intro-
duced for the first time and defined formally. ii) The Pull/Bound Maximum Marginal
Relevance (PBMMR) family of algorithms is illustrated, which exploits spatial probing lo-
cations and the adaptive alternation of score-based and distance-based access to reduce
the number of fetched objects. iii) An instance of PBMMR, called Space Partitioning and
Probing (SPP), is presented, whose pulling strategy uses a tight upper bound. iv) SPP
is shown to attain the same diversification quality and exactly the same output as MMR,
the most popular result diversification algorithm, but accessing only a fraction of the
objects. v) Experiments, omitted here for brevity, show that, with a negligible compu-
tational overhead, SPP accesses in typical conditions less than 20% of the objects (less
than 2% in best conditions), a substantial gain over past work on spatial scatter queries
[14], which accesses all objects. Future work includes extending SPP to arbitrary joins
of data sources. Also, we plan to tackle the possible presence of uncertainty in the data
as was done in [12] for top-k queries.
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