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Risk Identification and Analysis

Risk Identification and Analysis: investigation activities with
the goal of defending a Nation or a community against potential
threats.

Studies in the literature [Chen et al., 2004, Jonas and Harper, 2006,
Seifert, 2010] have proved the effectiveness of Data Mining tech-
niques in supporting the investigative activity in risk identification
and analysis.
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Orthogonally: Topic Detection and Tracking

Over the last years, Topic Detection and Tracking (TDT) [Allan, 2002,
Yang et al., 1999, Brants et al., 2003] is being recognized as an
important research area in Data Mining.

Research lines in TDT ([Chung and Mcleod, 2005]):
News segmentation
New topic detection
Topic tracking
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Exploiting Topic Tracking techniques

Idea: to exploit topic tracking techniques in the risk identifi-
cation and analysis
Goal: to discover evolutions of criminal behaviors over time
Input: streams of time-stamped news (or, generally, docu-
ments) associated to criminals
Method: incremental analysis of streams of news in order
to identify clusters of similar criminals and represent their
evolution over time
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Related work...

... in cluster evolution analysis for topic tracking

[Leskovec et al., 2009, Zhu and Shasha, 2003]: tracking topics, ideas
and “memes” from news

[Kleinberg, 2002, Aggarwal, 2005]: an evolution is discovered when a
particular data mining model becomes stale because of the underlying
change in the data distribution

[Zhong, 2005]: incremental and neural network based k-means applied
to news (incremental update of the closest cluster)

[Agarwal et al., 2010]: clustering of manually labeled blogs (generation
of a so called “collective wisdom”)

[Li et al., 2009] clustering stories into topics from different blogs. Two-
phases clustering (initial static step and incremental distance-based
update of clusters)
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Related work...

... in risk identification and analysis

[Chen et al., 2004]: different algorithms (for clustering, classification,
social network analysis, etc.) are proposed for analyzing data about
criminal activities (e.g. money laundering identification, criminal
profiling, etc.)

[Schroeder et al., 2007, Ozgul et al., 2007]: social/criminal network
link analysis

[Chen et al., 2004, Chau et al., 2002, Xu and Chen, 2004]: extraction
of crime entity associations from textual documents
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Main differences

Our approach...
does not consider variations and evolution (in volume) of
short and distinctive phrases in the news, but the evolu-
tion of each single criminal to which multiple news can be
associated
→ Unit of analysis: criminal

discovers evolutions expressed according to the relevant
terms that allow us the representation and characterization
of criminals
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TB-CREDIS

The framework TB-CREDIS (Time-Based CRiminal Evolution
DIScoverer) consists of the following phases:

partitioning the whole time period of analysis in disjoint,
adjacent and equal-size time intervals (time-windows);
VSM representation of the all the time-stamped documents,
which are implicitly associated to a time-window;

feature selection;

identification of the semantic position of each criminal in
each time window;
clustering of criminals for each time window;
evolution discovery and analysis.
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Feature Selection...

The number of terms extracted from documents collection
is usually high
→ a feature selection phase is necessary

No additional information to guide the feature selection (e.g.
target attribute)
→ unsupervised feature selection
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Feature Selection - Variance

Variance: selects the top-k terms with the highest variance
value

Score(tr ) =
1

n − 1

n∑
j=1

(sr ,j − s̄r )2

sr,j = weight of the term tr in the
document dj

s̄r = average weight of the term tr
in the whole documents collection

Strong points:

It selects terms which well discriminate between documents
Low time complexity

Weak points:

It does not take into account the correlation between select-
ed terms
Selected terms may not preserve the similarity/dissimilarity
between documents
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Feature Selection: MIGRAL-CP

MIGRAL-CP (MInimum GRAph Loss with Correlation Penal-
ty): selects the top uncorrelated k terms which best preserve
the similarity/dissimilarity between documents :

Score1(tr ) =
1
2

1− 1
n

n∑
j=1

ρ(Vj ,Fr ,j)


where:

Vj = [vj,1, vj,2, . . . , vj,n] are the dissimilarity values between the doc-
ument j and all the other documents, using all the terms (Gaussian
distance on TF representations)
Fr,j =

[
(sr,j − sr,1)2, (sr,j − sr,2)2, . . . , (sr,j − sr,n)2] are the dissimilarities

between the document j and all the other documents, using the term tr
only
ρ is the Pearson correlation coefficient

M.Ceci Mining Temporal Evolution of Criminal Behaviors



Feature Selection: MIGRAL-CP

Scorei(tr ) = Scorei−1(tr )× (1− penalty(tr , t̂i−1))

At each iteration i , scores are reduced according to a penalty
function which considers the correlation between the term tr and
the term that has been selected in the previous iteration (̂ti−1)
→ prevents the selection of redundant features

We use: penalty(tr , t̂i−1) = max (0,
∣∣∣ρ(tr , t̂i−1)

∣∣∣− γ),
where 0 ≤ γ ≤ 1.
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Representing criminals

Criminal: a point in the h-dimensional space, which better rep-
resents his/her semantic position (crime typologies).

The semantic position of each criminal c is identified:
for each time window τz

according to the set of documents he/she is associated to,
in the considered time window
(possibly) considering documents belonging to previous time-
windows

Example (h = 7): [attack: 0.593; fire: 0.371; claim: 0.271;
suspect: 0.1; report: 0.057; injur: 0.057; islam: 0.05]
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Representing criminals: Time-weighted centroid

X (c, τz ,h) =

∑
<dj ,τj>∈Sc,τz ,h

pτz ,τj (h)× wdj∑
<dj ,τj>∈Sc,τz ,h

pτz ,τj (h)
,

where:
Sc,τz ,h is the set of documents associated to the criminal c,
belonging to the considered time window τz or one of the
previous h − 1 time windows

pτz ,τj (h) = 1− z−j+1
h is the time fading-factor which reduces

the effect of the document dj according to the distance be-
tween the considered time window (τz) and the time window
τj the considered document is associated to.
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Representing criminals: Max Density Point

Each document is replaced by a k -dimensional Gaussian function:

d ′j (x) =
k∏

i=1

1√
2πσ2

e−
(xi−si,j )

2

2σ2

where σ ∈ [0,1] is a parameter that defines the width of the Gaussian
function.

The criminal position is that which presents the maximum value of the
sum of time-weighted Gaussian functions associated to documents:

X (c, τz ,h) = arg max
x∈[0,1]k

∑
<dj ,τj>∈Sc,τz ,h

pτz ,τj (h)× d ′j (x)
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Representing criminals: Max Density Point

An example of documents represented in a 2-dimensional space
(top view). The red point represents the identified semantic
position of the criminal.
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Representing criminals: Max Density Point

Computational optimization:

equal-width discretization of the space [0, 1]k into Φk ,

where Φ =
{

0, 1
β
, 2
β
, . . . , β−1

β
, 1
}

greedy search, focusing only on the points for which the d ′j (·) functions
reach the maximum values

→ being y the value in which the Gaussian function assumes
the maximum value on a dimension, we search in [y − σ; y + σ]

the criminal position at the time-window τz can only be the position at the
previous time-window or around new documents (belonging to τz )

→ the search can be limited to the areas interested by the
documents belonging to τz and to X (c, τz ,h)

parallel computation on multiple CPUs
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Clusters evolution discovering

Observations on the clustering step:
there is no guarantee that all the crime typologies are present
in each time window
there is no way to know a-priori the real number of crime
typologies for each time-window

Proposed solution:
K-Means clustering algorithm
automatic estimation of the most appropriate number of clus-
ters, using Principal Component Analysis (PCA) [Jolliffe, 2002],
for each time-window
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Clusters evolution discovering

Once clustering is performed for each time-window, it is possible
to identify:

the position of each cluster in the terms space. Analyzing
the terms with the highest weight in the cluster can give an
idea about the crime typology it represents
a matching between clusters of different time windows ac-
cording to the similarity between the clusters’ centroids
the number of criminals which have evolved from the crime
typology represented by two different clusters belonging to
two adjacent time-windows
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Clusters evolution discovering

An example of matching found between two clusters belonging to different time
windows, analyzing the centroids’ similarity.
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Clusters evolution discovering

An Example of a discovered criminal evolution. Three criminals have moved
from the cluster C2 in τz−1 to the cluster C1 in τz .
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Experiments

Datasets:
Synthetic dataset
Global Terrorism Database (GTD)

Evaluation:
average Q-Modularity [Newman, 2006] of the obtained clus-
tering
running time
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Experiments: Synthetic data

Synthetic dataset characteristics:
10 consecutive annual time windows (from 2001 to 2010)
100 criminals
up to 200 documents for each criminal
7 crime typologies generated from 7 specific vocabularies
and a generic English vocabulary (noise terms)
each criminal has the 30% of probability to change crime
typology

Experimental setup:
Feature selection: k = 10, γ = 0.5 (MIGRAL-CP)
Max Density Point method: β = 20
Variable h, σ and variance (for PCA)
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Experiments: Synthetic data
Variance MIGRAL-CP

Position h σ Var time q-mod time q-mod
Centroid 2 - 80% 00:20:52 0.157 00:55:54 0.198
Centroid 2 - 90% 00:20:52 0.150 00:55:54 0.209
Centroid 2 - 80% 00:20:58 0.102 00:55:59 0.142
Centroid 2 - 90% 00:20:58 0.101 00:55:59 0.143
Centroid 2 - 80% 00:21:00 0.080 00:56:01 0.114
Centroid 2 - 90% 00:21:00 0.081 00:56:01 0.115

MaxDensity 2 0.05 80% 00:21:47 0.322 00:56:44 0.392
MaxDensity 2 0.05 90% 00:21:47 0.356 00:56:44 0.380
MaxDensity 2 0.10 80% 01:20:35 0.335 01:50:08 0.375
MaxDensity 2 0.10 90% 01:20:35 0.357 01:50:08 0.373
MaxDensity 5 0.05 80% 00:20:19 0.341 00:57:12 0.399
MaxDensity 5 0.05 90% 00:20:19 0.365 00:57:12 0.379
MaxDensity 5 0.10 80% 01:53:13 0.363 02:19:22 0.350
MaxDensity 5 0.10 90% 01:53:13 0.366 02:19:22 0.368
MaxDensity 10 0.05 80% 00:22:27 0.339 00:57:28 0.386
MaxDensity 10 0.05 90% 00:22:27 0.385 00:57:28 0.371
MaxDensity 10 0.10 80% 02:10:17 0.369 02:35:54 0.354
MaxDensity 10 0.10 90% 02:10:17 0.372 02:35:54 0.369
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Experiments: Synthetic data

A cluster evolution in the synthetic dataset. TF-IDF values are plotted.
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Experiments: Real data

Read dataset characteristics:
Global Terrorism Database (GTD)1

Information on about 98,000 terrorism events (1970-2010)
13 annual time-windows have been considered (1998-2010)
A total of 11,225 news about 82 criminals/organizations

Experimental setup:
Feature selection: k = 15, γ = 0.5 (MIGRAL-CP)
Max Density Point method: β = 20
σ = 0.05 and variable h and variance (for PCA)

1http://www.start.umd.edu/gtd/
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Experiments: Real data

Variance MIGRAL-CP
Position h σ Var time q-mod time q-mod
Centroid 2 - 90% 00:09:01 0.294 39:54:44 0.245
Centroid 2 - 95% 00:09:01 0.319 39:54:44 0.270
Centroid 5 - 90% 00:09:06 0.297 39:54:48 0.224
Centroid 5 - 95% 00:09:06 0.316 39:54:48 0.249
Centroid 10 - 90% 00:09:10 0.304 39:54:51 0.232
Centroid 10 - 95% 00:09:10 0.322 39:54:51 0.245

MaxDensity 2 0.05 90% 110:41:36 0.322 100:17:46 0.447
MaxDensity 2 0.05 95% 110:41:36 0.509 100:17:46 0.479
MaxDensity 5 0.05 90% 137:41:36 0.325 118:59:17 0.454
MaxDensity 5 0.05 95% 137:41:36 0.521 118:59:17 0.487
MaxDensity 10 0.05 90% 144:20:21 0.400 126:06:27 0.452
MaxDensity 10 0.05 95% 144:20:21 0.524 126:06:27 0.479
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Considerations

the MIGRAL-CP algorithm leads to higher clustering quali-
ty in the synthetic dataset, at the price of significantly higher
running times

the Max Density Point method always significantly outper-
forms the centroid method on both datasets, at the price of
slightly higher running times

the best combination appears to be MaxDensity-Variance
in the case of a relatively small number of clusters (Var=90%)
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Conclusions

A framework which is able to incrementally extract knowledge
from time-stamped news has been proposed.

Three sequential steps:
VSM representation of documents (feature selection)
identification of the semantic position of subjects
clustering and evolution analysis

Evaluation has been conducted in the context of risk identifica-
tion and analysis in order to understand the evolution of criminal
behaviors.
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Future work

Analytic identification of the value of σ, with respect to h,
such that the global optimum is guaranteed

A detailed qualitative evaluation on the evolutions discov-
ered on real datasets

An analysis of the effects of different size of time-windows
on the obtained results
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Thank you for your attention
Questions?

Advertisement: Workshop NFMCP @ ECMLPKDD2012
NFMCP: New Frontiers in Mining Complex Patterns

Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari and Zbigniew Ras

Important Dates
Paper submission: Friday, June 29, 2012
Acceptance notification: Friday July 20, 2012
Camera-ready of accepted papers: Friday August 3, 2012
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Representing criminals: Max Density Point

A Gaussian function defined on a single dimension with y = 0.5, β = 20,
σ = 0.05 (a) and σ = 0.10 (b). In (a) it would be enough to analyze only the
values 0.45, 0.50 and 0.55, whereas in (b) it would be necessary to analyze
also the values 0.40 and 0.60.
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