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Context

Let L be an ontology specification language.

The Ontology-Based Query Answering Problem over L
INPUT:

A relational database D

An ontological theory Σ ∈ L
A boolean conjunctive query q

QUESTION: Does D ∪Σ ⊧ q hold?
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Context

Question
What are/should be the “shape” and the properties of L?

Language L should balance expressiveness and complexity.

In particular it should possibly be:

1 intuitive and easy-to-understand;

2 QA-decidable (i.e., Query Answering should be decidable);

3 tractable for query answering;

4 powerful enough in terms of expressiveness;

5 suitable for an efficient implementation.
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Context
The Datalog± family (Cali, Gottlob and Lukasiewicz 2008):

1 is based on Datalog∃;

2 generalizes some well known ontology specification languages;

3 is arousing increasing interest.

Example (1)

∃Y father(X,Y) ← person(X) Datalog∃ rule
person(Y) ← father(X,Y) Datalog rule

Example (2)
A ⊑ R.B DL axiom
∃Y R(X,Y) ∧ B(Y) ← A(X) Datalog± rule
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Context

Common strengths

Known Datalog± classes are:

1. Intuitive and easy-to-understand (enjoy the simplicity of Datalog);

2. QA-decidable.

Local weaknesses/shortcomings

Currently, each Datalog± class misses at least one of the following
properties:

3. Tractability;

4. Some useful expressive power (e.g. transitivity);

5. Suitability for an efficient implementation.
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Main Contribution: Shy, a new Datalog∃ class

1 Intuitive and easy to understand

2 QA-Decidable

3 Tractable QA: P-Complete in data complexity

4 Expressive:

Includes both Datalog and Linear-Datalog∃

Supports the standard first-order semantics for unrestricted
CQs with existential variables
Supports useful ontology properties

5 Suitable for an efficient implementation:

We implemented an efficient evaluator for Shy (DLV∃).
Experiments confirm the effectiveness for on-the-fly QA.
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Datalog∃ Programs and BCQs
A Datalog∃ program P is a finite set of rules of the form:

∀X∃Y atom[X′∪Y] ← conj[X]

A Boolean Conjunctive Query (BCQ) q is a first-order expression of the form:

∃Y conj[Y]

Query q is called atomic if conj consists of one atom.

Example

person(X) ← father(X,Y).
person(Y) ← father(X,Y).
∃Y father(X,Y) ← person(X).

∃Y person(Y) atomic
∃X∃Y father(pierfrancesco,X), father(X,Y) conjunctive
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The CHASE (1)
Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).
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The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).
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The CHASE (3)

Question
Does the CHASE terminate on the following program?

person(pierfrancesco)
∃Y father(X,Y) ← person(X)
person(Y) ← father(X,Y)

Theorem

Query Answering over Datalog∃ is undecidable, in the general case.
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Questions

CHASE may generate infinitely many (duplicate) homomorphic atoms

Can we avoid duplicate generation obtaining Datalog fixpoint
efficiency?

Under which assumptions duplicate-free CHASE ensures sound
and complete query answering?
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The PARSIMONIOUS-CHASE

Definition

For any Datalog∃ program P, PARSIMONIOUS-CHASE is the procedure
resulting by forcing the CHASE to stop as soon as each atom produced in a
level can be mapped homomorphically to someone else in previous levels.

The output of the PARSIMONIOUS-CHASE is denoted by pChase(P).
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The PARSIMONIOUS-CHASE

Parsimonious Programs and Parsimonious Sets

A Datalog∃ program P is called Parsimonious if, for each
a ∈ chase(P), pChase(P) homomorphically entails a.

Parsimonious-Sets denotes the class of parsimonious programs.

Theorem
Let D be a database, P be a parsimonious program, and q be a
Boolean atomic query. Then,

D ∪P ⊧ q iff pChase(D ∪P) ⊧ q
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Positive and Negative Results

Theorem
Atomic query answering against Parsimonious-Sets programs
is decidable

Theorem
Checking whether a program is parsimonious is not decidable.
In particular it is coRE-complete

Need for a recognizable class
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Recognizable Parsimonious Programs: Shy

Shy is a subclass of Datalog∃ relying on the following intuition:

During a CHASE-run on a Shy program, nulls propagated
body-to-head must not meet each other to join.

Theorem
Shy is recognizable. Membership is polynomial-time doable.

Theorem
Shy is a subclass of Parsimonious

Theorem
Atomic Query Answering over Shy is decidable
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Conjunctive queries over Shy

Question
Can we answer also conjunctive queries over Shy?

PARSIMONIOUS-CHASE alone doesn’t work!
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Conjunctive Queries over Shy (1)

Example

Using PARSIMONIOUS-CHASE to answer the following BCQ

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

The answer to the query should be Yes!
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Conjunctive Queries over Shy (2)

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

Let us both “promote” ϕ1 and ϕ2 (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.
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Conjunctive Queries over Shy (3)

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

Let us both “promote” ϕ1 and ϕ2 (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.
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Conjunctive Queries over Shy (4)

Definition

Let pChase(D ∪P,k) denote the output of PARSIMONIOUS-CHASE
after k resumptions.

Theorem
Let D be a database, P ∈ Shy and q be a BCQ with n different
(∃-quantified) variables. Then,

D ∪P ⊧ q iff pChase(D ∪P,n) ⊧ q
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Decidability and Complexity

Theorem

QA over Shy is decidable. In particular, it is

P-complete in data-complexity

EXP-complete in combined-complexity
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Expressive Power (1)
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Expressive Power (2)

Results

Shy includes Datalog

Shy includes Linear-Datalog∃

Shy and Weakly-Acyclic are uncomparable

Shy and Sticky /Sticky-Join are uncomparable

Shy and Guarded /Weakly-Guarded are uncomparable
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DLV∃: Architecture
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Comparison 1 (DLV∃ vs more expressive systems)

Data set System Full Infer. # solved Geom. Avg time
DLV∃ 17 14 2.87

LUBM Pellet 27 14 84.48
x10 OWLIM-Lite 33 12 53.31

OWLIM-SE 105 14 105.14
DLV∃ 55 14 9.70

LUBM Pellet – 0 –
x30 OWLIM-Lite 106 11 123.18

OWLIM-SE 323 14 323.57
DLV∃ 93 14 16.67

LUBM Pellet – 0 –
x50 OWLIM-Lite 187 11 223.79

OWLIM-SE 536 14 537.35

Running times for LUBM queries (sec) — Two hours timeout
Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers
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Comparison 2 (DLV∃ vs less expressive systems)

Running times for LUBM queries (sec) on the data set x50
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The End

Thanks!
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Context

Known Datalog± languages rely on three main paradigms:

weak-acyclicity ↝ “finite-model property”
(Fagin, Kolaitis, Miller and Popa TCS05);

guardedness ↝ “tree-model property”
(Cali, Gottlob and Kifer KR08);

stickiness ↝ “bounded-recursion property”
(Cali, Gottlob, Pieris RR10).
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Motivation (Complexity, Expressiveness, Implementations)

Tractability?
Datalog∃ class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
??? Shy P-complete
Sticky, Sticky-Join in AC0

Linear in AC0

Expressive Power? Implementation?
Currently, there in no system
that implements Query
Answering over
Weakly-Guarded or Guarded
programs.
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Contribution (Complexity, Expressiveness, Implementations)

Tractability?
Datalog∃ class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
Shy P-complete
Sticky, Sticky-Join in AC0

Linear in AC0

Expressive Power?
Implementation?
Query Answering over Shy
programs can already be
performed by DLV∃.
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Shy Property 1
If a variable Y occurs in more than one body atom of a rule r ∈ P, then
any σ mapping body(r) into chase(D ∪P) never maps Y into a null.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



43/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Shy Property 2
If two variables X,W occur in two different body atoms of a rule r ∈ P
and also in head(r), then any σ mapping body(r) into chase(D ∪P)
never maps X,W into the same null.
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Recognizability

Proposition

Checking whether a Datalog∃ program is Shy is doable in
polynomial-time.

Proof (Sketch)
The marking procedure:

1 propagates polynomially many “representative” nulls; and
2 reaches a fixpoint in polynomially many steps.
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Expressive Power (2)

Question

Why are Shy and Weakly-Acyclic uncomparable?

Intuitively, the following Shy program is not Weakly-Acyclic since its universal models
have infinite size.

Example

∃Y father(X,Y) ← person(X).
person(Y) ← father(X,Y).
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Expressive Power (3)

Question

Why are Shy and Sticky /Sticky-Join uncomparable?

Intuitively,
1 Sticky-Join does not capture transitivity.
2 Sticky programs allow some joins on nulls.
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Expressive Power (4)

Question

Why are Shy and Guarded /Weakly-Guarded uncomparable?

Intuitively,

1 Shy does not enjoy the tree-model property (There exists a shy program whose
chase hypergraph has infinite treewidth.) .

2 Guarded programs allow some joins on nulls.
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Expressive Power (5)

DLs VS Shy
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Expressive Power (6)

DL Axiom Shy Rule

A ⊑ B pA(X) → pB(X)

A ⊓ B ⊑ C pA(X),pB(X) → pC(X)

A ⊑ ∃R.B pA(X) → ∃Y pR(X ,Y),pB(Y)

∃R.A ⊑ B pR(X ,Y),pA(Y) → pB(X)

R ⊑ S pR(X ,Y) → pS(X ,Y)

R ⊑ S− pR(X ,Y) → pS(Y ,X)

R+ pR(X ,Y),pR(Y ,Z) → pR(X ,Z)

DLs VS Shy; A, B, C are concept names, R, S are role names.
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