Efficient Query Answering over Datalog with
Existential Quantifiers

Nicola Leone, Marco Manna,
Giorgio Terracina and Pierfrancesco Veltri*

*Department of Mathematics, University of Calabria, IT

SEBD 2012 - 20th Italian Symposium on Advanced Database Systems

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifie

Outline

e Introduction

e The Framework

e Parsimonious Programs
0 Shy Programs

© 'mplementation and Experiments

ncesco Veltri Efficient Query Answering over Datalog with Existential Qui

Introduction

Outline

o Introduction

esco Veltri Efficient Query Answering over Datalog with Existential Q

Introduction

Context

Let £ be an ontology specification language.

The Ontology-Based Query Answering Problem over £

INPUT:

@ A relational database D
@ An ontological theory ¥ € £

@ A boolean conjunctive query q

QUESTION: Does Du ¥ ~ g hold?

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Introduction

Context

What are/should be the “shape” and the properties of L?

Language £ should balance expressiveness and complexity.

In particular it should possibly be:
@ intuitive and easy-to-understand;
@ QA-decidable (i.e., Query Answering should be decidable);
© tractable for query answering;
© powerful enough in terms of expressiveness;

© suitable for an efficient implementation.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Introduction

Context
The Datalog* family (Cali, Gottlob and Lukasiewicz 2008):

@ is based on Datalog’;
@ generalizes some well known ontology specification languages;

@ is arousing increasing interest.

Example (1)

JdY father (X,Y) <« person (X) Dataiogj rule

person (Y) <« father (X,Y) Datalog rule
v

Example (2)

A € R.B DL axiom

dY R(X,Y) A B(Y) <« A(X) Datalog™ rule
v

esco Veltri Efficient Query Answering over Datalog with Existential Qu

Introduction

Context

Common strengths

Known Datalog® classes are:
1. Intuitive and easy-to-understand (enjoy the simplicity of Datalog);
2. QA-decidable.

Local weaknesses/shortcomings

Currently, each Datalog” class misses at least one of the following
properties:

3. Tractability;

4. Some useful expressive power (e.g. transitivity);

5. Suitability for an efficient implementation.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Introduction

Main Contribution: Shy, a new Datalog’ class

@ |Intuitive and easy to understand

@ QA-Decidable

© Tractable QA: P-Complete in data complexity
© Expressive:

e Includes both Datalog and Linear-Datalog”

e Supports the standard first-order semantics for unrestricted
CQs with existential variables

e Supports useful ontology properties

© Suitable for an efficient implementation:

e We implemented an efficient evaluator for Shy (DLV?).
e Experiments confirm the effectiveness for on-the-fly QA.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

The Framework

Outline

e The Framework

cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

Datalog® Programs and BCQs

A Datalog® program P is a finite set of rules of the form:

VX3Y atompxyy) < conjy,

A Boolean Conjunctive Query (BCQ) q is a first-order expression of the form:

3Y conjy,

Query q is called atomic if conj consists of one atom.

person (X) <« father(X,Y).
person (Y) <« father(X,Y).
Y father (X,Y) <« person (X).

3Y person (Y) atomic

X3y father (pierfrancesco,X), father(X,Y) conjunctive

ncesco Veltri Efficient Query Answering over Datalog with Existential Qu

The Framework

The CHASE (1)

D = {run(gazelle), fastest (gazelle)}

ry: 3JY pursues(Y,X) <« run(X).

rr: 3dY slowerThan (Y,X) <« fastest (X).

r3: pursues (X,Z) <« pursues(X,Y), slowerThan(Z,Y).
Iy: run(Y) <« pursues(X,Y).

cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

The CHASE (2)

D = {run(gazelle), fastest (gazelle)}

r;: 3JY pursues(Y,X) <« run(X).

rr: 3Y slowerThan(Y,X) <« fastest (X).

I3: pursues (X,Z) <« pursues (X,Y), slowerThan(Z,Y).
)

Iry: run(Y) < pursues(X,Y
0 run(gazelle)
ry

\4
1 pursues (¢, gazelle)

cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

The CHASE (2)

D = {run(gazelle), fastest (gazelle)}

riy: 3JY pursues (Y,X) <« run (X).
fr: 3JY slowerThan (Y,X) <« fastest (X).
I3: pursues (X,Z) <« pursues (X,Y), slowerThan(Z,Y).

ry: run(Y) < pursues(X,Y).
0 run (gazelle) fastest (gazelle)
ry r
Y Y
1 pursues (¢, gazelle) slowerThan (¢, gazelle)

t Query Answering over Datalog with Existential Qi

The Framework

The CHASE (2)

D = {run(gazelle), fastest (gazelle)}

riy: 3JY pursues (Y,X) <« run (X).
rr: 3Y slowerThan(Y,X) <« fastest (X).
I3: pursues (X,Z) <« pursues(X,Y), slowerThan(Z,Y).

ry: run(Y) < pursues(X,Y).
0 run(gazelle) fas
rq
Y
1 pursues (¢, ggelle) slowerThan (¢, gazelle)
fs\ /fs
2 pursues (¢, @)

cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

The CHASE (2)

D = {run(gazelle), fastest (gazelle)}

riy: 3JY pursues (Y,X) <« run (X).

rr: 3Y slowerThan(Y,X) <« fastest (X).

I3: pursues (X,Z) <« pursues (X,Y), slowerThan(Z,Y).
Iy: run(Y) <« pursues(X,Y).

0 run (ga‘m)l le)
rq
1

Y
¢1,gazelle) sl
\

fa\ /fa
2 pursues (¢, ¢)
Iy
Y
3 run (@)

esco Veltri Efficient Query Answering over Datalog with Existential Q

The Framework

The CHASE (2)

D = {run(gazelle), fastest (gazelle)}

r;: 3JY pursues(Y,X) <« run(X).

rr: 3Y slowerThan(Y,X) <« fastest (X).
I3: pursues (X,Z) <« pursues (X,Y), slowerThan(Z,Y).
ry: run(Y) < pursues(X,Y).
0 un (gazelle)
n
1 (N 11 11
pursues (@, gazelle) slov 1an (¢, gazelle)
! \ /
3\ /fs
2 ues (@1,)
Iy
Y
3 run (@)
n
Y

4

pursues (@3, @)
cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

The CHASE (3)

Does the CHASE terminate on the following program?

person (pierfrancesco)
dY father (X,Y) <« person (X)
person (Y) <« father (X,Y)

Query Answering over Datalog” is undecidable, in the general case.

cesco Veltri Efficient Query Answering over Datalog with Existential

The Framework

Questions

CHASE may generate infinitely many (duplicate) homomorphic atoms

@ Can we avoid duplicate generation obtaining Datalog fixpoint
efficiency?

@ Under which assumptions duplicate-free CHASE ensures sound
and complete query answering?

ncesco Veltri Efficient Query Answering over Datalog with Existential Qu

Parsimonious Programs

Outline

9 Parsimonious Programs

esco Veltri Effic Query Answering over Datalog with Existential Qi

Parsimonious Programs

The PARSIMONIOUS-CHASE

Definition

For any Datalog® program P, PARSIMONIOUS-CHASE is the procedure
resulting by forcing the CHASE to stop as soon as each atom produced in a
level can be mapped homomorphically to someone else in previous levels.

The output of the PARSIMONIOUS-CHASE is denoted by pChase(P).

0 run(gazelle) fastest (gazelle)
n r2
] s %
1 pursues ((pl,ga\zelle) slowegan (¢, gazelle)
Ty P
2 pursues (o1, @)
Iy
Y
3 run (@)
r
Y
4 pursues (@3, @)

esco Veltri Efficient Query Answering over Datalog with Existential Q

Parsimonious Programs

The PARSIMONIOUS-CHASE

Parsimonious Programs and Parsimonious Sets

A Datalog® program P is called Parsimonious if, for each
a e chase(P), pChase(P) homomorphically entails a.

Parsimonious-Sets denotes the class of parsimonious programs.

Let D be a database, P be a parsimonious program, and q be a
Boolean atomic query. Then,

DuPEq iff pChase(DuP) = q

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Parsimonious Programs

Positive and Negative Results

Atomic query answering against Parsimonious-Sets programs
is decidable

Checking whether a program is parsimonious is not decidable.
In particular it is corE-complete

Need for a recognizable class

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Shy Programs

Outline

0 Shy Programs

cesco Veltri Efficient Query Answering over Datalog with Existential

Shy Programs

Recognizable Parsimonious Programs: Shy

Shy is a subclass of Datalog” relying on the following intuition:

@ During a CHASE-run on a Shy program, nulls propagated
body-to-head must not meet each other to join.

Shy is recognizable. Membership is polynomial-time doable.
Shy is a subclass of Parsimonious
Atomic Query Answering over Shy is decidable

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Shy Programs

Conjunctive queries over Shy

Can we answer also conjunctive queries over Shy?

PARSIMONIOUS-CHASE alone doesn’t work!

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Qi

Shy Programs

Conjunctive Queries over Shy (1)

Using PARSIMONIOUS-CHASE to answer the following BCQ

dX3Y pursues (X,Y), slowerThan(Y,gazelle)

0 run(gazelle) fastest (gazelle)
] r
Y Y
1 pursues (¢, ga\zelle) sloweﬁan (¢, gazelle)
T v
2 pursues (¢, ¢)
Iy
Y
3 run (@)
n
Y
4 pursues (¢;, ¢)

The answer to the query should be Yes!

sco Veltri Efficient Query Answering over Datalog with Existential

Shy Programs

Conjunctive Queries over Shy (2)

3X3Y pursues (X,Y), slowerThan(Y,gazelle)

Let us both “promote” p1 and ¢, (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.

0 run(ga‘zelle) fastest (gazelle)
ry r2
1 (N 1lle) 1 h ?/ lle)
pursues (¢, gazelle slowerThan (¢, gazelle
' ~ — '
T L

I$S)

pursues (@,)

Iy
Y
3 run (@)

n

Y
4 pursues (¢, @)

sco Veltri Efficient Query Answering over Datalog with Existential

Shy Programs

Conjunctive Queries over Shy (3)

3X3Y pursues (X,Y), slowerThan(Y,gazelle)

Let us both “promote” p1 and ¢, (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.

0 run(gazelle) fastest (gazelle)
r r
Y Y
1 pursues (¢, gazelle) slowerThan (¢, gazelle)
6NN 13

I$S)

pursues (@i,)

Iy
Y
3 run (@)

r

Y
4 pursues (@3, @)

sco Veltri Efficient Query Answering over Datalog with Existential

Shy Programs

Conjunctive Queries over Shy (4)

Definition

Let pChase(D u P, k) denote the output of PARSIMONIOUS-CHASE
after k resumptions.

Let D be a database, P € Shy and g be a BCQ with n different
(3-quantified) variables. Then,

Du P q iff pChase(Du P,n) = q

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Shy Programs

Decidability and Complexity

QA over Shy is decidable. In particular, it is
@ P-complete in data-complexity
@ EXP-complete in combined-complexity

ncesco Veltri Efficient Query Answering over Datalog with Existential Qu

Shy Programs

Expressive Power (1)

JUav p(X,U,Y,V,Z2) «r(X,Y), r(Y,Z)

Datalog
Linear-Datalog?

PTIME-complete

37 r(Y,Z) «r(X,Y)

r(X,2) «r(X,Y), r(Y¥,2)

sco Veltri Efficient Query Answering over Datalog with Existential

Shy Programs

Expressive Power (2)

Weakly-Acyclic - Weakly-Guarded Sticky-Join

T T

Shy Guarded Sticky
\ A
/ /7 v\
Datalog Linear

Results

Shy includes Datalog

Shy includes Linear-Datalog®

Shy and Weakly-Acyclic are uncomparable
Shy and Sticky/Sticky-Join are uncomparable

Shy and Guarded/Weakly-Guarded are uncomparable

esco Veltri Efficient Query Answering over Datalog with Existential Qu

Implementation and Experiments

Outline

© 'mplementation and Experiments

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

DLV?: Architecture

P e Shy q P € Shy
MagicSets Resumptions
Rewriting Optimizer
P’ Shy h<n

> DLVre
D » (PARSIM. CHASE)
DLV?
v
answer(s)

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Implementation and Experiments

Comparison 1 (DLV? vs more expressive systems)

Data set System Full Infer. || # solved | Geom. Avg time
DLV? 17 14 2.87
LUBM Pellet 27 14 84.48
x10 OWLIM-Lite 33 12 53.31
OWLIM-SE 105 14 105.14
DLV? 55 14 9.70
LUBM Pellet - 0 -
x30 OWLIM-Lite 106 11 123.18
OWLIM-SE 323 14 323.57
DLV? 93 14 16.67
LUBM Pellet - 0 -
x50 OWLIM-Lite 187 11 223.79
OWLIM-SE 536 14 537.35

Running times for LUBM queries (sec) — Two hours timeout

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Implementation and Experiments

Comparison 2 (DLV- vs less expressive systems)

Requiem+DLV DLVAE
Query #

Load ‘ Ans | Tot Load ‘ Ans | Tot

1 13,0 0,5 13,5 13,5 4,9 18,5

3 6,6 0,4 7,0 9,2 2,4 11,6

4 19,2 1,4 20,6 19,7 1,6 21,3

5 48 0,3 5,1 29,4 9,3 38,7

6 2,6 2,9 5,6 2,8 3,0 5,9

7 15,9 5,2 21,0 18,0 10,7 28,7

9 17,3 1,9 19,2 20,9 25,2 46,1

10 14,9 1,0 15,9 15,6 5,3 21,0

13 18 0,2 19 29,4 5,1 344

14 2,6 2,7 5,3 25 27 5,2
Arith. Avg 9,9 1,6 11,5 16,1 7,0 23,1
Geom. Avg 7.2 1,0 9,0 12,4 5,0 18,7

Running times for LUBM queries (sec) on the data set x50

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

The End

Thanks!

cesco Veltri Efficient Query Answering over Datalog with Existential Q

Implementation and Experiments

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

Context

Known Datalog”® languages rely on three main paradigms:

@ weak-acyclicity ~ “finite-model property”
(Fagin, Kolaitis, Miller and Popa TCS05);

@ guardedness ~ “tree-model property”
(Cali, Gottlob and Kifer KR08);

@ stickiness ~ “bounded-recursion property”
(Cali, Gottlob, Pieris RR10).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Implementation and Experiments

Motivation (Complexity, Expressiveness, Implementations)

Tractability?

Datalog® class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
27? P-complete
Sticky, Sticky-Join in ACq
Linear in ACq

Expressive Power?

Implementation?

Weakly-Acyclic Weakly-Guarded Sticky-Join Cun«enﬂy’ there in no system
that implements Query
(iels Guarded Sticky Answering over
/‘7 ‘7\ f Weakly-Guarded or Guarded
Datalog Linear programs.

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

Contribution (Complexity, Expressiveness, Implementations)

Tractability?

Datalog® class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
Shy P-complete
Sticky, Sticky-Join in ACq
Linear in ACq

Expressive Power?

Implementation?

Weakly-Acyclic Weakly-Guarded Sticky-Join
Query Answering over Shy
Shy Guarded Sticky programs can already be
PN performed by DLV,
Datalog Linear

ncesco Veltri Efficient Query Answering over Datalog with Existential Qu

Implementation and Experiments

Shy Property 1

If a variable Y occurs in more than one body atom of a rule r € P, then
any o mapping body(r) into chase(D u P) never maps Y into a null.

h(...) « p1(X,Y), p2(¥,2), p3(¥,W)

N -7
4 \ / \/ N

¥ \ i ' [\
pl(X,c) p2(c,z2) p3(c,W | pl(X,9) p2(¢,2) p3(c,W) | pl(X,9) p2(@,2) Pp3(e W)

v v

X

esco Veltri Efficient Query Answering over Datalog with Existential Q

Implementation and Experiments

Shy Property 2

If two variables x,w occur in two different body atoms of arule r ¢ P
and also in head(r), then any o mapping body(r) into chase(D u P)
never maps X,W into the same null.

X ~>cAW~>c ~ A ~ 1X~>¢AW~>¢)

|
]
|
p2(z,¢) | pl(g,Y) p2(Z,) |

AV

v v

pl(g,Y) p2(Z,)

h(g, @)

X

esco Veltri Efficient Query Answering over Datalog with Existential Qu

Implementation and Experiments

Recognizability

Proposition

Checking whether a Datalog® program is Shy is doable in
polynomial-time.

Proof (Sketch)

The marking procedure:
@ propagates polynomially many “representative” nulls; and
@ reaches a fixpoint in polynomially many steps.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifief

Implementation and Experiments

Expressive Power (2)

Weakly-Acyclic - Weakly-Guarded Sticky-Join
1)
Shy Guarded Sticky
\ A
[7N
Datalog Linear

Why are Shy and Weakly-Acyclic uncomparable?

Intuitively, the following Shy program is not Weakly-Acyclic since its universal models
have infinite size.

dY father (X,Y) <« person(X).
person (Y) <« father(X,Y).

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

Expressive Power (3)

Weakly-Acyclic Weakly-Guarded Sticky-Join
A
Shy Guarded Sticky
A
/ /7 V\
Datalog Linear

Why are Shy and Sticky/Sticky-Join uncomparable?

Intuitively,
0 Sticky-Join does not capture transitivity.
e Sticky programs allow some joins on nulls.

esco Veltri Effic Query Answering over Datalog with Existential Qi

Implementation and Experiments

Expressive Power (4)

Weakly-Acyclic Weakly-Guarded Sticky-Join
A 7 zﬁ
Shy Guarded Sticky
// V\ A
Datalog Linear
Why are Shy and Guarded/Weakly-Guarded uncomparable?

Intuitively,

o Shy does not enjoy the tree-model property (There exists a shy program whose
chase hypergraph has infinite treewidth.) .

e Guarded programs allow some joins on nulls.

esco Veltri Efficient Query Answering over Datalog with Existential Q

Implementation and Experiments

Expressive Power (5)

DLs VS Shy

Weakly-Acyclic Weakly-Guarded Sticky-Join

1 1

Shy Guarded Sticky
Datalog Linear ‘
0 ELHT
DL-Lite

cesco Veltri Efficient Query Answering over Datalog with Existential

Implementation and Experiments

Expressive Power (6)

| DL Axiom | Shy Rule

AcB pa(X) — pp(X)
AnBeC PA(X),pa(X) — Po(X)
Ac=3R.B pa(X) = 3Y pr(X,Y),ps(Y)
3RA=B Pr(X,Y),pa(Y) = ps(X)

RcS Pr(X,Y) —» ps(X,Y)

Rc S Pr(X,Y) = ps(Y,X)

R+ Pr(X,Y),pa(Y,Z) - pr(X,2)

DLs VS Shy; A, B, C are concept names, R, S are role names.

ncesco Veltri Efficient Query Answering over Datalog with Existential Qu

	Introduction
	The Framework
	Parsimonious Programs
	Shy Programs
	Implementation and Experiments

