
1/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Efficient Query Answering over Datalog with
Existential Quantifiers

Nicola Leone, Marco Manna,
Giorgio Terracina and Pierfrancesco Veltri∗

∗Department of Mathematics, University of Calabria, IT

SEBD 2012 - 20th Italian Symposium on Advanced Database Systems

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



2/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



3/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



4/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Context

Let L be an ontology specification language.

The Ontology-Based Query Answering Problem over L
INPUT:

A relational database D

An ontological theory Σ ∈ L
A boolean conjunctive query q

QUESTION: Does D ∪Σ ⊧ q hold?

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



5/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Context

Question
What are/should be the “shape” and the properties of L?

Language L should balance expressiveness and complexity.

In particular it should possibly be:

1 intuitive and easy-to-understand;

2 QA-decidable (i.e., Query Answering should be decidable);

3 tractable for query answering;

4 powerful enough in terms of expressiveness;

5 suitable for an efficient implementation.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



6/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Context
The Datalog± family (Cali, Gottlob and Lukasiewicz 2008):

1 is based on Datalog∃;

2 generalizes some well known ontology specification languages;

3 is arousing increasing interest.

Example (1)

∃Y father(X,Y) ← person(X) Datalog∃ rule
person(Y) ← father(X,Y) Datalog rule

Example (2)
A ⊑ R.B DL axiom
∃Y R(X,Y) ∧ B(Y) ← A(X) Datalog± rule

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



7/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Context

Common strengths

Known Datalog± classes are:

1. Intuitive and easy-to-understand (enjoy the simplicity of Datalog);

2. QA-decidable.

Local weaknesses/shortcomings

Currently, each Datalog± class misses at least one of the following
properties:

3. Tractability;

4. Some useful expressive power (e.g. transitivity);

5. Suitability for an efficient implementation.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



8/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Main Contribution: Shy, a new Datalog∃ class

1 Intuitive and easy to understand

2 QA-Decidable

3 Tractable QA: P-Complete in data complexity

4 Expressive:

Includes both Datalog and Linear-Datalog∃

Supports the standard first-order semantics for unrestricted
CQs with existential variables
Supports useful ontology properties

5 Suitable for an efficient implementation:

We implemented an efficient evaluator for Shy (DLV∃).
Experiments confirm the effectiveness for on-the-fly QA.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



9/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



10/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Datalog∃ Programs and BCQs
A Datalog∃ program P is a finite set of rules of the form:

∀X∃Y atom[X′∪Y] ← conj[X]

A Boolean Conjunctive Query (BCQ) q is a first-order expression of the form:

∃Y conj[Y]

Query q is called atomic if conj consists of one atom.

Example

person(X) ← father(X,Y).
person(Y) ← father(X,Y).
∃Y father(X,Y) ← person(X).

∃Y person(Y) atomic
∃X∃Y father(pierfrancesco,X), father(X,Y) conjunctive

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



11/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (1)
Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



12/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



13/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



14/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



15/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



16/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (2)

Example
D = {run(gazelle), fastest(gazelle)}

r1 ∶ ∃Y pursues(Y,X) ← run(X).
r2 ∶ ∃Y slowerThan(Y,X) ← fastest(X).
r3 ∶ pursues(X,Z) ← pursues(X,Y), slowerThan(Z,Y).
r4 ∶ run(Y) ← pursues(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



17/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The CHASE (3)

Question
Does the CHASE terminate on the following program?

person(pierfrancesco)
∃Y father(X,Y) ← person(X)
person(Y) ← father(X,Y)

Theorem

Query Answering over Datalog∃ is undecidable, in the general case.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



18/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Questions

CHASE may generate infinitely many (duplicate) homomorphic atoms

Can we avoid duplicate generation obtaining Datalog fixpoint
efficiency?

Under which assumptions duplicate-free CHASE ensures sound
and complete query answering?

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



19/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



20/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The PARSIMONIOUS-CHASE

Definition

For any Datalog∃ program P, PARSIMONIOUS-CHASE is the procedure
resulting by forcing the CHASE to stop as soon as each atom produced in a
level can be mapped homomorphically to someone else in previous levels.

The output of the PARSIMONIOUS-CHASE is denoted by pChase(P).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



21/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The PARSIMONIOUS-CHASE

Parsimonious Programs and Parsimonious Sets

A Datalog∃ program P is called Parsimonious if, for each
a ∈ chase(P), pChase(P) homomorphically entails a.

Parsimonious-Sets denotes the class of parsimonious programs.

Theorem
Let D be a database, P be a parsimonious program, and q be a
Boolean atomic query. Then,

D ∪P ⊧ q iff pChase(D ∪P) ⊧ q

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



22/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Positive and Negative Results

Theorem
Atomic query answering against Parsimonious-Sets programs
is decidable

Theorem
Checking whether a program is parsimonious is not decidable.
In particular it is coRE-complete

Need for a recognizable class

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



23/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



24/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Recognizable Parsimonious Programs: Shy

Shy is a subclass of Datalog∃ relying on the following intuition:

During a CHASE-run on a Shy program, nulls propagated
body-to-head must not meet each other to join.

Theorem
Shy is recognizable. Membership is polynomial-time doable.

Theorem
Shy is a subclass of Parsimonious

Theorem
Atomic Query Answering over Shy is decidable

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



25/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Conjunctive queries over Shy

Question
Can we answer also conjunctive queries over Shy?

PARSIMONIOUS-CHASE alone doesn’t work!

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



26/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Conjunctive Queries over Shy (1)

Example

Using PARSIMONIOUS-CHASE to answer the following BCQ

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

The answer to the query should be Yes!
Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



27/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Conjunctive Queries over Shy (2)

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

Let us both “promote” ϕ1 and ϕ2 (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



28/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Conjunctive Queries over Shy (3)

∃X∃Y pursues(X,Y), slowerThan(Y,gazelle)

Let us both “promote” ϕ1 and ϕ2 (the nulls introduced in the first level) to
constants, and “resume” the PARSIMONIOUS-CHASE execution.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



29/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Conjunctive Queries over Shy (4)

Definition

Let pChase(D ∪P,k) denote the output of PARSIMONIOUS-CHASE
after k resumptions.

Theorem
Let D be a database, P ∈ Shy and q be a BCQ with n different
(∃-quantified) variables. Then,

D ∪P ⊧ q iff pChase(D ∪P,n) ⊧ q

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



30/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Decidability and Complexity

Theorem

QA over Shy is decidable. In particular, it is

P-complete in data-complexity

EXP-complete in combined-complexity

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



31/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (1)

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



32/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (2)

Results

Shy includes Datalog

Shy includes Linear-Datalog∃

Shy and Weakly-Acyclic are uncomparable

Shy and Sticky /Sticky-Join are uncomparable

Shy and Guarded /Weakly-Guarded are uncomparable

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



33/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Outline

1 Introduction

2 The Framework

3 Parsimonious Programs

4 Shy Programs

5 Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



34/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

DLV∃: Architecture

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



35/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Comparison 1 (DLV∃ vs more expressive systems)

Data set System Full Infer. # solved Geom. Avg time
DLV∃ 17 14 2.87

LUBM Pellet 27 14 84.48
x10 OWLIM-Lite 33 12 53.31

OWLIM-SE 105 14 105.14
DLV∃ 55 14 9.70

LUBM Pellet – 0 –
x30 OWLIM-Lite 106 11 123.18

OWLIM-SE 323 14 323.57
DLV∃ 93 14 16.67

LUBM Pellet – 0 –
x50 OWLIM-Lite 187 11 223.79

OWLIM-SE 536 14 537.35

Running times for LUBM queries (sec) — Two hours timeout
Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



36/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Comparison 2 (DLV∃ vs less expressive systems)

Running times for LUBM queries (sec) on the data set x50
Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



37/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

The End

Thanks!

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



38/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



39/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Context

Known Datalog± languages rely on three main paradigms:

weak-acyclicity ↝ “finite-model property”
(Fagin, Kolaitis, Miller and Popa TCS05);

guardedness ↝ “tree-model property”
(Cali, Gottlob and Kifer KR08);

stickiness ↝ “bounded-recursion property”
(Cali, Gottlob, Pieris RR10).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



40/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Motivation (Complexity, Expressiveness, Implementations)

Tractability?
Datalog∃ class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
??? Shy P-complete
Sticky, Sticky-Join in AC0

Linear in AC0

Expressive Power? Implementation?
Currently, there in no system
that implements Query
Answering over
Weakly-Guarded or Guarded
programs.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



41/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Contribution (Complexity, Expressiveness, Implementations)

Tractability?
Datalog∃ class Data Complexity
Weakly-Guarded EXP-complete
Guarded, Weakly-Acyclic P-complete
Shy P-complete
Sticky, Sticky-Join in AC0

Linear in AC0

Expressive Power?
Implementation?
Query Answering over Shy
programs can already be
performed by DLV∃.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



42/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Shy Property 1
If a variable Y occurs in more than one body atom of a rule r ∈ P, then
any σ mapping body(r) into chase(D ∪P) never maps Y into a null.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



43/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Shy Property 2
If two variables X,W occur in two different body atoms of a rule r ∈ P
and also in head(r), then any σ mapping body(r) into chase(D ∪P)
never maps X,W into the same null.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



44/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Recognizability

Proposition

Checking whether a Datalog∃ program is Shy is doable in
polynomial-time.

Proof (Sketch)
The marking procedure:

1 propagates polynomially many “representative” nulls; and
2 reaches a fixpoint in polynomially many steps.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



45/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (2)

Question

Why are Shy and Weakly-Acyclic uncomparable?

Intuitively, the following Shy program is not Weakly-Acyclic since its universal models
have infinite size.

Example

∃Y father(X,Y) ← person(X).
person(Y) ← father(X,Y).

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



46/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (3)

Question

Why are Shy and Sticky /Sticky-Join uncomparable?

Intuitively,
1 Sticky-Join does not capture transitivity.
2 Sticky programs allow some joins on nulls.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



47/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (4)

Question

Why are Shy and Guarded /Weakly-Guarded uncomparable?

Intuitively,

1 Shy does not enjoy the tree-model property (There exists a shy program whose
chase hypergraph has infinite treewidth.) .

2 Guarded programs allow some joins on nulls.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



48/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (5)

DLs VS Shy

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers



49/49

Introduction
The Framework

Parsimonious Programs
Shy Programs

Implementation and Experiments

Expressive Power (6)

DL Axiom Shy Rule

A ⊑ B pA(X) → pB(X)

A ⊓ B ⊑ C pA(X),pB(X) → pC(X)

A ⊑ ∃R.B pA(X) → ∃Y pR(X ,Y),pB(Y)

∃R.A ⊑ B pR(X ,Y),pA(Y) → pB(X)

R ⊑ S pR(X ,Y) → pS(X ,Y)

R ⊑ S− pR(X ,Y) → pS(Y ,X)

R+ pR(X ,Y),pR(Y ,Z) → pR(X ,Z)

DLs VS Shy; A, B, C are concept names, R, S are role names.

Pierfrancesco Veltri Efficient Query Answering over Datalog with Existential Quantifiers


	Introduction
	The Framework
	Parsimonious Programs
	Shy Programs
	Implementation and Experiments

