
Stratification-based Criteria for
Checking Chase Termination?

Sergio Greco, Francesca Spezzano, and Irina Trubitsyna

DEIS, Università della Calabria, 87036 Rende, Italy
{greco,fspezzano,irina}@deis.unical.it

Stratification-based Criteria for
Checking Chase Termination

(Extended Abstract)

Sergio Greco, Francesca Spezzano and Irina Trubitsyna

DEIS, Università della Calabria, 87036 Rende, Italy
{greco,fspezzano,irina}@deis.unical.it

Abstract. Several database areas such as data exchange and integration
share the problem of fixing database instance violations with respect to a
set of constraints. The chase algorithm solves such violations by inserting
tuples and setting the value of nulls. Unfortunately, the chase algorithm
may not terminate and the problem of deciding whether the chase process
terminates is undecidable. Recently there has been an increasing interest
in the identification of sufficient structural properties of constraints which
guarantee that the chase algorithm terminates.
In this paper we present more general criteria for chase termination. We
first present extensions of the well-known stratification condition and,
then, introduce a new criterion, called local stratification (LS), which
generalizes both super-weak acyclicity and stratification-based criteria
(including the class of constraints which are inductively restricted).

1 Introduction

Several database areas such as data exchange and integration share the problem
of fixing database instance violations with respect to a set of constraints [1–
6]. The chase algorithm solves such violations by inserting tuples and setting
the value of nulls. Unfortunately, the chase algorithm may not terminate and
the problem of deciding whether the chase process terminates is undecidable.
Recently there has been an increasing interest in the identification of sufficient
structural properties of constraints which guarantee that the chase algorithm
terminates. Most of these criteria extend weak acyclicity (WA) [7] by analyzing
nulls propagation (e.g. the safety criterion (SC) [8]) and constraints firing (e.g.
c-stratification (CStr) and inductive restriction (IR) [9], super-weak acyclicity
(SwA) [10]).

The idea underlying c-stratification, also used in the IR and SwA criteria,
is to consider, in the propagation of nulls, how constraints may fire each other.
However, there are simple cases where current criteria are not able to understand
that all chase sequences are finite.

Example 1. Consider the following set of constraints Σ1 consisting of the TGD

∀x∀y E(x, y) ∧ E(y, x) → ∃z E(y, z) ∧ E(z, x)

We can distinguish two cases. If we suppose to have a database instance D1 =
{E(a, b), E(b, a)} we have that the TGD is not satisfied, but the constraint will be
applied only once by the chase as the resulting database D′

1 = {E(a, b), E(b, a),

? Extended Abstract

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

186 S. Greco, F. Spezzano, and I. Trubitsyna

E(b, η1), E(η1, a)} is consistent. Otherwise, if we suppose to have a database
instance D2 = {E(a, a)}, it is already consistent, and no chase step will be
applied. It is easy to see that the chase is always terminating for all database
instances, but none of the existing criteria guaranteeing the termination of all
chase sequences is able to recognize it as terminating. ✷

In order to cope with this problem, we first propose a new extension of c-
stratification, called WA-stratification (WA-Str) and then introduce a new crite-
rion, called local stratification (LS), which generalizes both super-weak acyclicity
and inductive restriction). Moreover, both WA-Str and LS guarantee the termi-
nation of all chase sequences, for all database instances, in polynomial time.

2 Preliminaries

We introduce the following disjunct sets of symbols: (i) an infinite set Consts of
constants, (ii) an infinite set Nulls of labeled nulls and (iii) an infinite set V ars
of variables. A relational schema R is a set of relational predicates R, each with
its associated arity ar(R). An instance of a relational predicate R of arity n is
a set of ground atoms in the form R(c1, . . . , cn), where ci ∈ Consts ∪ Nulls.
Such (ground) atoms are also called tuples or facts. We denote by D a database
instance constructed on Consts and by J,K the database instances constructed
on Consts ∪Nulls. Given an instance K, Nulls(K) (resp. Consts(K)) denotes
the set of labeled nulls (resp. constants) occurring in K. An atomic formula (or
atom) is of the form R(t1, . . . , tn) where R is a relational predicate, t1, . . . , tn
are terms belonging to the domain Consts ∪ V ars and n = ar(R).

Given a relational schema R, a tuple generating dependency (TGD) overR is
a formula of the form ∀x∀z φ(x, z) → ∃y ψ(x,y), where φ(x, z) and ψ(x,y) are
conjunctions of atomic formulas over R; φ(x, z) is called the body of r, denoted
as Body(r), while ψ(x,y) is called the head of r, denoted asHead(r). An equality
generating dependency (EGD) over R is a formula of the form ∀x φ(x) → x1 =
x2, where x1 and x2 are among the variables in x.

In the following we will often omit the universal quantification, since we
assume that variables appearing in the body are universally quantified and vari-
ables appearing only in the head are existentially quantified. In some cases we
also assume that the head and body conjunctions are sets of atoms.

Definition 1 (Homomorphism [7]). Let K1 and K2 be two instances over R
with values in Consts∪Nulls. A homomorphism h : K1 → K2 is a mapping from
Consts(K1)∪Nulls(K1) to Consts(K2)∪Nulls(K2) such that: (1) h(c) = c, for
every c ∈ Consts(K1), and (2) for every fact Ri(t) of K1, we have that Ri(h(t))
is a fact of K2 (where, if t = (a1, ..., as), then h(t) = (h(a1), ..., h(as))). ✷

Similar to homomorphisms between instances, a homomorphism h from a
conjunctive formula φ(x) to an instance J is a mapping from the variables x to
Consts(J) ∪ Nulls(J) such that for every atom R(x1, . . . , xn) of φ(x) the
fact R(h(x1), . . . , h(xn)) is in J .

For any database instance D and set of constraints Σ over a database schema
R, a solution for (D,Σ) is an instance J such that D ⊆ J and J |= Σ (i.e. J
satisfies all constraints in Σ). A universal solution J is a solution such that for
every solution J ′ there exists a homomorphism h : J → J ′. The set of universal
solutions for (D,Σ) will be denoted by USol(D,Σ).

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Stratification-based Criteria for Checking Chase Termination 187

Definition 2 (Chase step [7]). Let K be a database instance.
(1) Let r be a TGD φ(x, z) → ∃yψ(x,y). Let h be a homomorphism from

φ(x, z) to K such that there is no extension of h to a homomorphism h′ from
φ(x, z)∧ψ(x,y) to K. We say that r can be applied to K with homomorphism h.
Let K ′ be the union of K with the set of facts obtained by: (a) extending h to
h′ such that each variable in y is assigned a fresh labeled null, followed by (b)
taking the image of the atoms of ψ under h′. We say that the result of applying

r to K with h is K ′, and write K →r,hK ′.
(2) Let r be an EGD φ(x) → x1 = x2. Let h be a homomorphism from

φ(x) to K such that h(x1) 6= h(x2). We say that r can be applied to K with
homomorphism h. More specifically, we distinguish two cases. (a) If both h(x1)
and h(x2) are in Consts the result of applying r to K with h is “failure”, and

K →r,h ⊥. (b) Otherwise, let K ′ be K where we identify h(x1) and h(x2) as
follows: if one is a constant, then the labeled null is replaced everywhere by the
constant; if both are labeled nulls, then one is replaced everywhere by the other.

We say that the result of applying r to K with h is K ′, and write K →r,hK ′. ✷

Definition 3 (Chase [7]). Let Σ be a set of TGDs and EGDs, and let K be
an instance.
(1) A chase sequence of K with Σ is a sequence (finite or infinite) of chase steps

Ki →
r,hi

Ki+1, with i = 0, 1, ..., K0 = K and r a dependency in Σ.

(2) A finite chase of K with Σ is a finite chase sequenceKi →
r,hi

Ki+1, 0 ≤ i < m,
with the requirement that either (a) Km =⊥ or (b) there is no dependency r of
Σ and there is no homomorphism hm such that r can be applied to Km with
hm. We say that Km is the result of the finite chase. We refer to case (a) as the
case of a failing finite chase and we refer to case (b) as the case of a successful
finite chase. ✷

In [7] it has been shown that, for any instance D and set of constraints Σ: (i)
if J is the result of some successful finite chase of 〈D,Σ〉, then J is a universal
solution; (ii) if some failing finite chase of 〈D,Σ〉 exists, then there is no solution.

Chase Termination Criteria. We now present a brief overview on the
well-known chase termination conditions that guarantee for every database D
the termination of all chase sequences in PTIME in the size of D. Given a
criterion C, the class of constraints satisfying C will be denoted by C.
Weak acyclicity. Let Σ be a set of TGDs over a database schema R, then
pos(Σ) denotes the set of positions Ri such that R denotes a relational predicate
ofR and there is anR-atom appearing inΣ. Weak acyclicity (WA) is based on the
construction of a directed graph dep(Σ) = (pos(Σ), E), called the dependency
graph, where E is defined as follows. For every TGD φ(x, z) → ∃yψ(x,y) in Σ,
then: i) for every x in x occurring in position Ri in φ and in position Sj in ψ,
add an edge Ri → Sj (if it does not already exist); ii) for every x in x, appearing
in position Ri in φ and for every y in y appearing in position Tk in ψ, add a
special edge Ri →∗ Tk (if it does not already exist). Σ is weakly acyclic if dep(Σ)
has no cycle going through a special edge.

Safety. The safety condition (SC) [9] is based on the notion of affected posi-
tions. An affected position denotes a position in which null values may appear,

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

188 S. Greco, F. Spezzano, and I. Trubitsyna

that is it can also take values from Nulls. A position Ri is said to be affected
if there is a constraint r : φ(x, z) → ∃yψ(x,y) in Σ and either i) there is a
variable y in y appearing in position Ri in ψ, or ii) there is a variable x in x
appearing both in position Ri in ψ and only in affected positions in the body of
r. The set of affected positions of Σ is denoted by aff(Σ).

Given a set of TGDs Σ, the propagation graph of Σ, denoted as prop(Σ) =
(aff(Σ), E′), is a subset of dep(Σ) = (pos(Σ), E) such that E′ contains the
edges in E whose positions are affected (since aff(Σ) ⊆ pos(Σ)). Moreover, Σ
is said to be safe if prop(Σ) does not contain cycles with special edges.

C-Stratification. The idea behind c-stratification (CStr) [11, 9] is to decom-
pose the set of constraints into independent subsets, where each subset consists
of constraints that may fire each other, and check each component separately
for weak acyclicity. Given a set of constraints Σ and two constraints r1, r2 ∈ Σ,
we say that r1 ≺c r2 iff there exists a relational database instance K1 and two
homomorphisms h1 and h2 such that i) K1 →∗,r1,h1K2, ii) K2 6|= h2(r2) and iii)
K1 |= h2(r2), where the oblivious chase step K1 →∗,r1,h1K2 states that there is a
homomorphism h′1 extending h1 which associates every existentially variable y
in h1(r1) to a fresh labeled null. Intuitively, r1 ≺c r2 means that firing r1 can
cause the firing of r2. We say that Σ is c-stratified iff the constraints in every
cycle of the c-chase graph G(Σ) = (Σ, {(r1, r2)|r1 ≺c r2}) are weakly acyclic.

Inductive Restriction. The inductive restriction criterion (IR) extends both
CStr and SC by partitioning constraints in a more refined way. In particular, it
first computes the graph (G′(Σ)) ⊆ G(Σ) and partition Σ into Σ1, ..., Σn, where
each Σi is a set of dependencies defining a strongly connected components in
G′(Σ), next, if n = 1 the safety criterion is applied to Σ, otherwise the IR
criterion is applied inductively to each Σi.

Super-weak acyclicity. The super-weak acyclicity (SwA) [10] builds a trigger
graph Υ (Σ) = (Σ,E) where edges define relations among constraints. An edge
ri rj means that a null value introduced by a constraint ri is propagated
(directly or indirectly) into the body of rj .

Let Σ be a set of TGDs and let sk(Σ) be the logic program obtained by
skolemizing Σ, i.e. by replacing each existentially quantified variable y appearing
in the head of a TGD r by the skolem function f r

y (x), where x is the set of
variables appearing both in the body and in the head of r. A place is a pair
(a, i) where a is an atom of sk(Σ) and 0 ≤ i ≤ ar(a). Given a TGD r and an
existential variable y in the head of r, Out(r, y) denotes the set of places (called
output places) in the head of sk(r) where a term of the form f r

y (x) occurs. Let
r be a TGD r and let x be a universal variable of r, In(r, x) denotes the set of
places (called input places) in the body of r where x occurs.

Given a set of variables V, a substitution θ of V is a function mapping each
v ∈ V to a finite term θ(v) built upon constants and function symbols. Two
places (a, i) and (a′, i) are unifiable and we write (a, i) ∼ (a′, i) iff there exist
two substitutions θ and θ′ of (respectively) the variables a and a′ such that
a[θ] = a′[θ′]. Given two sets of places Q and Q′ we write Q ⊑ Q′ iff for all q ∈ Q
there exists some q′ ∈ Q′ such that q ∼ q′.

For any set Q of places, Move(Σ,Q) denotes the smallest set of places Q′

such that Q ⊆ Q′, and for every constraint r = Br → Hr in sk(Σ) and every

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Stratification-based Criteria for Checking Chase Termination 189

variable x, if Πx(Br) ⊑ Q′ then Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr)
denote the sets of places in Br and Hr where x occurs.
Given a set Σ of TGDs and two TGDs r1, r2 ∈ Σ, we say that r1 triggers r2
in Σ and write r1 r2 iff there exists an existential variable y in the head of
r1, and a universal variable x2 occurring both in the body and head of r2 such
that In(r2, x) ⊑ Move(Σ,Out(r1, y)). A set of constraints Σ is super-weakly
acyclic iff the trigger graph Υ (Σ) = (Σ, {(r1, r2)|r1 r2}) is acyclic. W.r.t.
other criteria, SwA also takes into account that a variable may occur more than
once in the same atom. SwA extends SC, but is not comparable with CStr.
3 WA-Stratification
We start by introducing some improvements for the c-stratification criterion.
First of all, observe that c-stratification does not specify what kind of cycles
are checked (i.e. simple or general) [12]. Checking simple cycles is not correct
as it may not consider all possible chase sequences, but checking general cycles,
means that for each strongly connected component there is one cycle including
all nodes in the component which subsumes all other cycles on the same com-
ponent (in terms of constraints to be considered). Thus, a first observation on
(c-)stratification (in terms of correctness, if simple cycles are considered, or in
terms of efficiency, if all cycles are considered) is that it refers to cycles instead
of strongly connected components. A further observation is that it uses oblivious
chase for checking termination of standard chase and its applicability is limited.

Definition 4 (WA-Stratification). Given a set of dependenciesΣ and r1, r2 ∈
Σ, we say that r1 < r2 iff there exist a relational database instance K, homo-
morphisms h1, h2 and a set S of atoms, such that

1. K1 6|= h1(r1),

2. K1 →r1,h1
K2,

3. K1 ∪ S |= h2(r2),
4. K2 ∪ S 6|= h2(r2) and
5. Null(S) ∩ (Null(K2) − Null(K1)) = ∅ (i.e. S does not contain new null

values introduced in K2).

We say that Σ is WA-stratified (WA-Str) iff the constraints in every nontrivial
strongly connected component of the firing graph Γ (Σ) = (Σ, {(r1, r2)|r1 < r2})
are weakly acyclic. ✷

With respect to c-stratification, WA-Str also considers in the satisfaction of
constraint r2, in addition to the database K1, a set of atoms S (cond. (3))
and atoms in S cannot contain null values introduced in the application of the
constraint r1 (cond. (5)). Moreover, since we are considering strongly connected
components (instead of cycles) these components must not be trivial, that is they
must have at least one edge, otherwise the constraint cannot be fired cyclically.
As a further important observation, in the above definition we consider standard
chase for both constructing the graph Γ (Σ) and checking weak acyclicity.

Example 2. Consider again the set of constraints Σ1 of Example 1. It is easy to
see that, by considering standard chase, does not exist an initial database in-
stance such that the constraint can fire itself, while, by considering the oblivious
chase, the constraint fires itself ad infinitum. Thus, the set of constraints Σ1 is
WA-stratified, but not c-stratified. ✷

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

190 S. Greco, F. Spezzano, and I. Trubitsyna

The following proposition states thatWA-Str criterion is more general than CStr
and is not comparable with SC. Consequently it is not comparable even with
SwA as SC is strictly contained in SwA and CStr is not comparable with SwA.

Proposition 1. CStr WA-Str and SC ∦WA-Str. ✷

It is important to observe that WA-Str criterion could be improved by testing
safety instead of weak acyclicity over the firing graph. Further improvements
could be obtained by considering super-weak acyclicity instead of safety.

Definition 5 (SC-Stratification and SwA-Stratification). Given a set of
TDGs Σ, we say that (1) Σ is SC-stratified (SC-Str) if the constraints in ev-
ery strongly connected component of the firing graph Γ (Σ) are safe, and (2)
Σ is SwA-stratified (SwA-Str) if the constraints in every strongly connected
component of the firing graph Γ (Σ) are super-weak acyclic. ✷

We now analyze the complexity of the above criteria starting by defining a bound
on the complexity of the firing problem, i.e. the complexity of checking whether
r1 < r2.

Lemma 1. Let r1 : φ1 → A1 ∧· · ·Ak and r2 : B1 ∧· · ·Bn → ψ2 be two TGDs.
The problem of checking whether r1 < r2 is bounded by O((k + 1)n). ✷

Although the theoretical complexity of the ”firing” problem is exponential, in
most cases it is very low (e.g. inclusion dependencies, multivalued dependencies
[13]), as usually the number n of body atoms in the fired constraint r2 is small
and the number of atoms in the head of constraint r1 which could be used to fire
r2 through their unification with Bi (i.e. ki > 1) is even smaller. Indeed, if the
number of atoms in the body of r2 is bounded by a constant, the firing problem
is in PTIME. Significative subclasses of constraints for which the firing problem
becomes polynomial could be identified, but this is not the aim of this paper.

In the following, for a given set of constraints Σ, we shall denote with Cij

the complexity of the problem of checking whether ri < rj , for ri, rj ∈ Σ, and
with Cm = max{Cij |ri, rj ∈ Σ}.

Proposition 2. Let Σ be a set of TGDs, D be a database Then:

– the problem of checking whether Σ is WA-stratified (resp. SC-stratified,
SwA-stratified) is bounded by O(Cm × |Σ|2);

– if Σ is WA-stratified (resp. SC-stratified, SwA-stratified), the length of every
chase sequence of Σ over D is polynomial in the size of D. ✷

The class of constraints satisfying criterion C-Str, for C ∈ {WA,SC, SwA},
will be denoted by C-Str. The next theorem states the relationships among the
above mentioned criteria and other previously defined conditions.

Theorem 1.

1. WA-Str SC-Str SwA-Str,
2. for C ∈ {WA,SC, SwA}, C C-Str and
3. SR ∦ SwA-Str and IR ∦ SwA-Str. ✷

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Stratification-based Criteria for Checking Chase Termination 191

4 Local Stratification

It is trivial that more powerful criteria could be defined by composing criteria
which are not comparable. We next present a different generalization of super-
weak acyclicity which also generalizes the class IR.

We start by introducing a notion of fireable place. We say that a place q
appearing in the body of constraint r could be fired by a place q′ appearing in
the head of constraint r′, denoted by q′ < q, if q ∼ q′ and r′ < r. Given two sets
of places Q and Q′ we say that Q could be fired by Q′, denoted by Q′ < Q iff
for all q ∈ Q there exists some q′ ∈ Q′ such that q′ < q.

Given a set Q of places, we define MOV E(Σ,Q) as the smallest set of places
Q′ such that Q ⊆ Q′, and for every constraint r = Br → Hr in sk(Σ) and
every variable x, if Q′ < Πx(Br) then Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr)
denote the sets of places in Br and Hr where x occurs.

With respect to the functionMove, the new functionMOVE here considered
takes into account the firing of places and not only the unification of places.

Definition 6 (Local Stratification). Given a set Σ of TGDs and two TGDs
r1, r2 ∈ Σ, we say that r1 triggers r2 in Σ and write r1 →֒ r2 iff there exists
an existential variable y in the head of r1, and a universal variable x occurring
both in the body and head of r2 such that MOVE(Σ,Out(r1, y)) < In(r2, x).
A set of constraints Σ is locally stratified (LS) iff the trigger graph ∆(Σ) =
{(r1, r2)|r1 →֒ r2} is acyclic. ✷

Proposition 3. For every set of TGDs Σ and for every database D
– the problem of checking whether Σ is locally stratified is bounded by O(Cm×

|Σ|2);
– if Σ is locally stratified, the length of every chase sequence of Σ over D is

polynomial in the size of D. ✷

The below theorem states that the class of locally stratified constraints (denoted
by LS) is more general than SwA-Str and IR.

Theorem 2. SwA-Str LS and IR LS. ✷

The next example shows that the containment of SwA-Str ∪ IR in LS is strict.

Example 3. The following set of constraints Σ3 is locally stratified, but it is
neither super-weakly acyclic nor inductively restricted:

r1 : N(x) → ∃ y ∃z E(x, y) ∧ S(z, y)
r2 : E(x, y) ∧ S(x, y) → N(y)
r3 : E(x, y) → E(y, x)

Considering SwA, we have that Move(Σ,Out(r1, y)) = {p3, p5, p10, p13, p2, p14}
and In(r1, x) = {p1} ⊑Move(Σ,Out(r1, y)). The trigger graph is cyclic as r1
r1 and, therefore, Σ3 is not super-weakly acyclic. As r1 < r3 < r2 < r1 we have
that Σ3 is not SwA-Str as well. Σ3 is not IR as r1 ≺c r3 ≺c r2 ≺c r1 and for each
pair of constraints ri, rj such that ri ≺c rj , it is possible to construct a database
containing null values in positions E1, E2, N1 and S2 such that whenever ri fires
rj a null value is propagated from the head of ri to the head of rj .
Moreover, as r1 6֒→ r1 (MOV E(Σ, (r1, y)) = {p3, p5, p13} and In(r1, x) = {p1} ⊑
MOV E(Σ, Out(r1, y))), ∆(Σ3) is acyclic and, thus, Σ3 is locally stratified. ✷

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

192 S. Greco, F. Spezzano, and I. Trubitsyna

Fig. 1. Criteria Relationships.

5 Conclusions

In this paper we have proposed new criteria for checking chase termination on the
base of constraints structural properties. We have shown that the local stratifi-
cation criterium here introduced, strictly generalize criteria previously proposed
in the literature. The relationships among previous criteria and the ones here
proposed are reported in Figure 1.

References

1. L. E. Bertossi, “Consistent query answering in databases,” SIGMOD Record,
vol. 35, no. 2, 2006.

2. J. Chomicki, “Consistent query answering: Five easy pieces,” in ICDT, 2007.
3. G. DeGiacomo, D. Lembo, M. Lenzerini, and R. Rosati, “On reconciling data

exchange, data integration, and peer data management,” in PODS, 2007.
4. R. Fagin, P. G. Kolaitis, and L. Popa, “Data exchange: getting to the core,” ACM

Trans. Database Syst., vol. 30, no. 1, 2005.
5. P. G. Kolaitis, J. Panttaja, and W. C. Tan, “The complexity of data exchange,”

in PODS, 2006.
6. M. Lenzerini, “Data integration: A theoretical perspective,” in PODS, 2002.
7. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data exchange: semantics and

query answering,” Theor. Comput. Sci., vol. 336, no. 1, 2005.
8. M. Meier, M. Schmidt, and G. Lausen, “On chase termination beyond stratifica-

tion,” PVLDB, vol. 2, no. 1, 2009.
9. M. Meier, M. Schmidt, and G. Lausen, “On chase termination beyond stratifica-

tion,” CoRR, vol. abs/0906.4228, 2009.
10. B. Marnette, “Generalized schema-mappings: from termination to tractability,” in

PODS, 2009.
11. A. Deutsch, A. Nash, and J. B. Remmel, “The chase revisited,” in PODS, 2008.
12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms. The MIT Press, 2001.
13. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,

1995.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

