
A Lightweight Model for Publishing and Sharing
Linked Web APIs?

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering – University of Brescia
Via Branze, 38 – 25123 Brescia, Italy

{bianchin|deantone|melchior}@ing.unibs.it

A lightweight model for publishing and sharing
Linked Web APIs

ex

Devis Bianchini, Valeria De Antonellis, Michele Melchiori

Dept. of Information Engineering – University of Brescia
Via Branze, 38 – 25123 Brescia, Italy

{bianchin|deantone|melchior}@ing.unibs.it

Abstract. The web of Linked Data has been proposed in the last years
in order to create a global data graph, that spans data sources, connected
by RDF links, and enables the discovery of new resources. Recently, Web
APIs have been more and more used to access documents and metadata
from the web of Linked Data and to easily compose new applications
called web mashups. In this paper, we describe a lightweight model for
publishing and sharing Web APIs and mashups on the web of Linked
Data. The model has been designed (a) to support providers who publish
new Web APIs used for accessing the web of Linked Data, (b) to support
the web designer who aims at exploring and selecting available Web
APIs for building or maintaining a web mashup, and (c) to make the
mashup itself available on top of the web of Linked Data. The functional
architecture of a platform based on the model is also introduced.

1 Introduction

The web of Linked Data can be seen as a global database, where resources
are identified through URIs, are semantically described and globally connected
through RDF links [3]. Recently, Web APIs have been more and more used
to access documents and metadata from the web of Linked Data and to easily
compose new applications called web mashups. In this paper, we describe a
lightweight model for publishing and sharing Web APIs and mashups on the
web of Linked Data. A lightweight model for Linked Web APIs built on top of
the web of Linked Data has been proposed in [7], where the aim is to support
users in the semantic annotation of Web APIs by leveraging on the huge amount
of linked web resources. In particular, the SWEET tool [5] has been designed to
assist users in annotating HTML descriptions of Web APIs, relying on solutions
like Watson [4] for browsing the web of Linked Data, so that it is possible to
identify suitable vocabularies (e.g., eCl@ass, Good Relations and FOAF) and
use them for the annotation. Our goal in this paper is to extend the model
described in [7] to improve the selection from-the-shelf of available Web APIs
and to better support their aggregationfor building new web mashups.

? Extended Abstract

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

76 D. Bianchini, V. De Antonellis, and Michele Melchiori

The motivations of our effort rely on a lack of support for browsing and se-
lecting the right Web APIs from a highly populated repository of third party
components. As a motivating example, consider a web designer who wants to
make available for his friends a new web application for finding informations,
trailers and ratings on Michelangelo Antonioni’s movies (see Figure 1, where
a screenshot of MovieGram1, a similar application, is shown). To this aim, the
web designer has to find and wire Web APIs that provide information about
movies (e.g., Rottentomatoes.com) and Web APIs to show videos and trailers
(e.g., YouTube), instead of designing the application from scratch (that could
be a non-trivial and time consuming task). On the other hand, browsing and
selection of the right functionalities from a huge list of heterogeneous Web APIs
is not an easy task if manually performed. To mention the well-known Pro-
grammableWeb API repository, which registers over 5,600 Web APIs (a number
that is continuously growing), the web designer may perform a keyword-based
search and find up to 32 Web APIs related to the keyword movie and up to 141
APIs for displaying videos, each of them presents several invocable operations
with I/Os that must be properly wired (for instance, in the application in Fig-
ure 1, videos related to the Antonioni’s Zabriskie Point movie are shown on the
YouTube Web API). Therefore, the web designer must be properly supported in
the selection and aggregation of available Web APIs.

Fig. 1. An example of mashup that mixes up few APIs out of an highly populated
repository.

To this aim, we propose the model described in this paper, where: (1) HTTP
URIs are used to identify Web APIs, (2) useful (RDF) information are provided
on the Web API description when someone looks up a Web API through its URI,

1 http://moviegr.am/.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

A Lightweight Model for Publishing and Sharing Linked Web APIs 77

and (3) proper links are set to relate Web APIs to each other, thus enabling easy
development and sharing of new web applications.

The paper is organized as follows. In Section 2 the lightweight model is
described. Section 3 introduces the I-Mash platform, an on-going project, based
on the model, that is being designed (a) to support providers who publish new
Web APIs used for accessing the web of Linked Data, (b) to support the web
designer who aims at exploring and selecting available Web APIs for building or
maintaining a web mashup, and (c) to make the mashup itself available on top
of the web of Linked Data. Finally, Section 4 closes the paper.

2 Linked Web API model

Following the lesson learnt by the iServe platform [7], we propose the conceptual
model shown in Figure 2. The model aims at connecting the contents of the
ProgrammableWeb repository of Web APIs with the web of Linked Data to fas-
ten Web API selection and aggregation, going beyond keyword-based searching
facilities offered by the repository, given the huge number of Web APIs among
which the web designer must choose with few information to support him. We
considered the ProgrammableWeb repository since, to the best of our knowledge,
it is the most complete collection of Web APIs and user-defined web mashups.

lwa:WebMashup lwa:WebAPI lwa:Operation lwa:Message lwa:MessagePart

lwa:Event

lwa:Activation
Relationship

rest:URI
Template

rest:Method

rdf:Literal

owl:Ontology rdf:Resource

lwa:Category

lwa:composedOf

lwa:hasEvent

lwa:hasOperation

owl:useOntology

lwa:hasCategory

lwa:similarTo,

lwa:potentialOpOpCoupling,

lwa:hasSourceAPI

lwa:hasTargetAPI

lwa:hasSourceEvent

lwa:hasTargetOperation

sawsdl:modelReference

lwa:hasEventOutput

rest:hasAddress
rest:hasMethod

lwa:hasOutput

lwa:hasFault

lwa:hasIntput

sawsdl:loweringSchemaMapping

sawsdl:liftingSchemaMapping

lwa:hasPart

lwa:hasName

lwa:hasTaxonomy

rdfs:type

rest:URI
Template

lwa:hasURI

lwa:EventType

lwa:hasType

lwa:potentialEvOpCoupling

Fig. 2. The semantics-enabled Linked Web API conceptual model.

Basic elements of the model have been defined in the lwa namespace. We
rely on existing vocabularies, namely SAWSDL, RDF(S) and hRESTS, identified
with the sawsdl, rdf/rdfs, rest namespace prefixes, respectively. We define a

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

78 D. Bianchini, V. De Antonellis, and Michele Melchiori

lwa:WebMashup as composed of Web APIs. Each Web API is uniquely identified
by an URI. Moreover, a set of common elements can be identified in Web API
descriptions:

– inputs and outputs, represented through the Message construct, which in
turn can be composed of several MessageParts;

– operations, associated with an address (which is built by concatenating the
API URI with the operation name), used to invoke the operation itself, and
a method (e.g., POST and GET HTTP methods) for its invocation;

– events, to model user’s interactions with the Web API interface (they are
commonly used in complex Web APIs such as GoogleMaps); events are de-
scribed by an event type (e.g., onmouseover, onmouseclick) and the outputs
or arguments which are raised on event occurrence (for instance, a click on a
map raises an event which contains the coordinates of the points which the
mouse is positioned on);

– categories, that are taken from public classifications available on the Web
(see for example the ProgrammableWeb site, where 67 categories such as
mapping, payment, search are considered).

To add semantics to the Linked Web API model, we used the model reference,
lifting schema mapping and lowering schema mapping constructs proposed in the
SAWSDL specification. Schema mappings are used to provide grouding from the
conceptual model to the concrete message formats (lowering schema mapping)
and viceversa (lifting schema mapping). Model reference construct is used to
associate operation names, inputs and outputs and event arguments to concepts
taken from the web of Linked Data.

2.1 Linking Web APIs

Publication of new Web APIs and new web mashups on the web of Linked Data
must be properly supported to help providers in identifying links between them.
We consider three kinds of links between Web APIs: in the following, for each
kind of link, we will provide a short description, an example, semi-automatic
techniques relying on the web of Linked Data to support the link identification
and the way the link is included in the model in Figure 2. Additional details can
be found in [2].

Similar Web APIs

A) Synopsis. Web APIs are linked towards other APIs that provide similar func-
tionalities. This means that linked Web APIs present semantically close I/O mes-
sages and operations and compatible categories. Web API similarity is evaluated
with respect to a set of operations in the API that is source of the relationship.
In Figure 2, Web API similarity is represented through the lwa:similarTo con-
struct.
B) Example. Both Rottentomatoes.com API and the Internet Movie Database

(IMDb) API present an operation for searching movies; the operation requires as

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

A Lightweight Model for Publishing and Sharing Linked Web APIs 79

input one or more keywords and returns movie information. Therefore, with
respect to this operation, the Rottentomatoes.com and IMDb APIs are similar.

C) Semi-automatic link identification. We provide a set of matching techniques
to identify similar Web APIs, extensively defined in [2]. These techniques are
based on the computation of a concept affinity CAff() ∈ [0..1] to quantify the
degree of similarity between pairs of concepts, used in the semantic annotation
of, respectively, (i) operations and (ii) I/Os parameters. Here we simply state
that CAff is based on both a terminological (domain-independent) matching
based on the use of WordNet and a semantic (domain dependent) matching
based on the ontologies on the web of Linked Data, used as source of knowledge.
The concept affinity evaluation algorithm looks for a path of relationships be-
tween two concepts c1 and c2; we consider four cases: (1) c1 and c2 are defined
as equivalent in one of the ontologies; (2) there is a path of isa relationships
from c1 to c2 in one of the ontologies; (3) c1 and c2 are not semantically related
in any ontology, but their names belong to the same synset in WordNet; (4)
c1 and c2 are not semantically related in any ontology and their names belong
to different synsets in WordNet, but there is a path of hyponymy/hypernymy
relations which connects the two synsets. The affinity between two concepts c1
and c2 is maximum (that is, equal to 1.0) in the first and third case, otherwise,
the highest the length of the path in the second and fourth case, the lowest is
concept affinity. Two Web APIs are similar if they are classified in the same cate-
gory and the average CAff between their operations and I/O messages, namely
the functional similarity degree between Web APIs, exceedes a threshold exper-
imentally set. The average CAff is computed, through the application of the
Dice formula [8], as the average affinity between pairs of concepts, one from the
first API and one from the second one. Pairs of concept to be considered in the
average similarity computation are selected according to a maximization func-
tion that relies on the assignment in bipartite graphs and has been introduced
in [1]. This function ensures that each concept from the first API participates
in at most one pair with one of the concepts from the second API. The formula
the functional similarity degree is summarized in Appendix A.

Op2Op wiring of Web APIs

A) Synopsis. Web APIs can be aggregated by wiring their operations. In this
case, the outputs of an operation from the first Web API can be used as in-
puts of an operation from the second Web API. Potential coupling between
Web APIs is checked with respect to a set of operations in the first Web AP.
In Figure 2, this kind of link between Web APIs is represented through the
lwa:potentialOpOpCoupling construct.

B) Example. The Rottentomatoes.com API presents an operation to find movies
given one or more keywords (for instance, to find Antonioni’s movies). Movie
titles can be used to retrieve related video by invoking the proper operation
from the YouTube API.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

80 D. Bianchini, V. De Antonellis, and Michele Melchiori

C) Semi-automatic link identification. This kind of link is identified by evaluating
the average CAff between the outputs of the operations in the first API and the
inputs of the operations in the second one. The link is set if the average CAff ,
denoted with functional Op2Op coupling degree (see Appendix A), exceeds a
threshold experimentally set.

Ev2Op wiring of Web APIs

A) Synopsis. Web APIs can be wired also at the UI level, by coupling an
event from the first Web API with an operation from the second one. Event-
operation coupling is made according to a publish/subscribe-like mechanism. In
this way, interactions with the UI of the first Web API raise events that trig-
ger operations from the second API, ensuring the synchronization of all Web
APIs that compose the web mashup. An event-operation pair is represented
in the model through an activation relationship. An activation relationship is
modeled with reference to the source and target Web APIs (hasSourceAPI and
hasTargetAPI constructs), to the source event (hasSourceEvent construct) and
to the target operation (hasTargetOperation construct). Potential coupling be-
tween Web APIs is checked with respect to a set of events in the first Web API.
In Figure 2, this kind of link between Web APIs is represented through the
lwa:potentialEvOpCoupling construct.
B) Example. The Rottentomatoes.com API presents an operation to find loca-
tions of movie theatres. These locations can be displayed an a map using the
GoogleMaps APIs. If the zoom level on the map is changed, the list of movie
theatres and related information must be properly updated.
C) Semi-automatic link identification. This kind of link can be identified in a
similar way with respect to the previous one. The average CAff between the
arguments of the events from the first Web API and the inputs of the operations
from second one is evaluated and the link is set if the average CAff , denoted
with functional Ev2Op coupling degree (see Appendix A), exceeds a threshold
experimentally set.

3 The I-Mash platform

The lightweight Linked Web API model is the basis for the I-mash platform,
an on-going project whose architecture is shown in Figure 3. The core module
of the platform is the Mashup Engine, which implements the Web API selection
and aggregation. The engine also includes the modules for CAff evaluation, re-
lying on the terminological knowledge provided by WordNet and on the domain-
specific knowledge from the web of Linked Data, that is accessed through the
Linked Web API Repository. The Linked Web API Repository maintains the
representation of Linked Web APIs published according to the model presented
in Figure 2. The Linked Web API descriptions refers to things (i.e., URIs of
ontological concepts) taken from the web of Linked Data, which the Linked Web
API Repository is built upon. Other I-mash modules, such as the Mashup En-

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

A Lightweight Model for Publishing and Sharing Linked Web APIs 81

Linked Web API Explorer SPARQL Query Manager

CAff Evaluator

I-MASH Publish API

Web designer

Mashup Engine

Linked Web API Repository / Cache

WordNet

Web of Linked
Data

I-MASH platform

ProgrammableWeb repository

Fig. 3. The I-mash platform architecture.

gine and the I-mash Publish API, exploit the Linked Web API Repository to
access the web of Linked Data. The I-mash Publish API module implements
the semi-automatic link identification metrics introduced in the previous section
and is used to publish new Web APIs extracted from the ProgrammableWeb
repository by invoking its methods (api.programmableweb.com/). Finally, the
Linked Web API Explorer supports the web designer to find Web API descrip-
tions and compose them in a web mashup, by leveraging the net of links in the
Linked Web API Repository. For skilled web designers, we equipped the I-mash
platform with an interface to directly query the Linked Web API Repository
through the formulation and execution of SPARQL queries. For more details on
the I-mash platform, we refer to [2].

4 Concluding remarks

In this paper we proposed a lightweight model to support both providers who
publish new Web APIs used for accessing the web of Linked Data and web
designers who aim at exploring and selecting available Web APIs for building or
maintaining a web mashup. Additional kinds of relationships to link Web APIs
will be studied and analyzed. Among them, we will consider complemetary Web
APIs, that is, Web APIs which start from similar inputs and provide alternative
functionalities, according to their use in previously defined web mashups. For
instance, according to ProgrammableWeb, the Rottentomatoes.com and the
YouTube APIs have been used together in four web mashups out of seven mashups
which include the Rottentomatoes.com API. The use of traditional support
and confidence DM metrics to infer Web API complementarity will be studied,
following preliminary results discussed in [6].

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

82 D. Bianchini, V. De Antonellis, and Michele Melchiori

References

1. D. Bianchini, V. De Antonellis, and M. Melchiori. Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal, 11(2):227–251, 2008.

2. D. Bianchini and V. De Antonellis. Linked Data Services and Semantics-enabled
Mashup, chapter on Semantic Search on the Web, pages 281–305. Springer, 2012.

3. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story so Far. Interna-
tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

4. M. d’Aquin, E. Motta, M. Sabou, S. Angeletou, L. Gridinoc, V. Lopez, and D. Guidi.
Toward a New Generation of Semantic Web Applications. IEEE Inte, 23(3):20–28,
2008.

5. M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantic annotation of Web APIs
with SWEET. In Proc. of the 6th Workshop on Scripting and Development for the
Semantic Web, 2010.

6. M. Melchiori. Hybrid techniques for Web APIs recommendation. In Proceedings
of the 1st International Workshop on Linked Web Data Management, pages 17–23,
2011.

7. C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue.
iServe: a Linked Services Publishing Platform. In Proceedings of ESWC Ontology
Repositories and Editors for the Semantic Web, 2010.

8. C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

A Formulas for Web API linking identification

Functional Web API similarity

SimIO(Wi,Wj) =
1
3

[∑
s,t CAff(ins,int)

|IN(Wj)| +
∑

h,k CAff(outh,outk)

|OUT (Wi)| +
∑

l,m CAff(opl,opm)

|OP (Wi)|

]

– IN(Wj) (resp., OUT (Wi)) is the set of concepts used to annotate the operation inputs
of the Wj Web API description (resp., the operation outputs of the Wi Web API
description);

– OP (Wi) is the set of concepts used to annotate the operations of the Wi Web API
description;

– ins ∈ IN(Wi), int ∈ IN(Wj), outh ∈ OUT (Wi), outk ∈ OUT (Wj), opl ∈ OP (Wi),
opm ∈ OP (Wj).

Web API Ev2Op coupling

CouplEV 2OP (Wi,Wj) =
∑

s,t CouplEvOp(evs,opt)

|EV (Wi)| evs ∈ EV (Wi), opt ∈ OP (Wj)

CouplEvOp(evs, opt) =
∑

h,k CAff(outh,ink)

|OUTev(evs)|

Web API Op2Op coupling

CouplOP2OP (Wi,Wj) =
∑

s,t CouplOpOp(ops,opt)

|OP (Wi)| ops ∈ OP (Wi), opt ∈ OP (Wj)

CouplOpOp(ops, opt) =
∑

h,k CAff(outh,ink)

|OUT (ops)|

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

