Frequent Itemset Mining of Distributed Uncertain Data under User-Defined Constraints

Alfredo Cuzzocrea
ICAR-CNR & University of Calabria, Italy

Carson K. Leung
University of Manitoba, Canada

SEBD 2012
Outline

• Introduction & related work

• Our proposed distributed mining system
 ▪ Finding constrained locally frequent itemsets
 • Step 1: Identification of items satisfying the constraint
 • Step 2: Construction of an UF-tree
 • Step 3: Mining of constrained frequent itemsets from the UF-tree
 ▪ Finding constrained globally frequent itemsets

• Experimental results

• Conclusions
Introduction

• **Frequent pattern mining (FPM)**
 - A data mining task
 - Non-trivial extraction of implicit, previously unknown, & potentially useful information—in the form of *frequently occurring collections of merchandise items or events*—from data

Cuzzocrea & Leung (SEBD 2012)
Related Work (1)

• **Apriori**
 - Generate-and-test paradigm

• **FP-growth**
 - Restricted test-only approach

• **UF-growth**
 - Mines frequent itemsets from uncertain data
 - Mines a centralized DB of uncertain data for all (unconstrained) frequent itemsets

Cuzzocrea & Leung (SEBD 2012)
Related Work (2)

• **DCF**
 - Mines constrained frequent itemsets from traditional precise data
 - Mines a centralized DB of precise data

• **FDM & Parallel-HFP-Leap**
 - Distributed mining
 - Do not handle constraints
 - Do not mine uncertain data
Our Proposed Distributed Mining System

• Non-trivial integration of
 ▪ constrained mining,
 ▪ distributed mining,
 ▪ uncertain data mining, with
 ▪ tree-based frequent itemset mining.

• Efficiently mines from distributed uncertain data for only those constrained frequent itemsets
Our Proposed Distributed Mining System

• Given:
 ▪ \(p \) sites/processors
 ▪ \(m = m_1 + m_2 + \ldots + m_p \) sensors in a distributed network
 ▪ \(m_1 \) wireless sensors transmit data to their closest or designated site/processor \(P_1 \)
 ▪ \(m_2 \) sensors transmit data to the site/processor \(P_2 \)
 ▪ etc.

• finds
 a) constrained itemsets that are locally frequent w.r.t. site/processor \(P_i \) and
 b) those that are globally frequent w.r.t. all sites/processors in the entire wireless sensor network
A. Finding Constrained Locally Frequent Itemsets

• Step 1:
 - Identification of items satisfying the constraint

• Step 2:
 - Construction of an UF-tree

• Step 3:
 - Mining of constrained frequent itemsets from the UF-tree
A1. Identification of Items Satisfying the SAM Constraint

• Succinct anti-monotone (SAM) constraint
 ▪ Any X satisfying C_{SAM} must be generated by combining items from ItemM
 • Items in ItemM can be efficiently enumerated (from the list of domain items) by selecting only those items that individually satisfy C_{SAM}
 ▪ An itemset X satisfying C_{SAM} cannot contain any item from ItemO
 • E.g., if an itemset X containing an item having price > $25, then X violates C_{SAM} & so does every superset of X
A1. Identification of Items Satisfying the SUC Constraint

- Succinct non-anti-monotone (SUC) constraint
 - Any itemset X satisfying C_{SUC} must be generated by combining at least one ItemM item and possibly some ItemO items
 - If X violates C_{SUC}, there is no guarantee that all or any of its supersets would violate C_{SUC}
 - Any itemset X satisfying C_{SUC} is composed of mandatory items (i.e., items that individually satisfy C_{SUC}) and possibly some optional items (regardless whether or not they satisfy C_{SUC})
A2. Construction of an UF-Tree (1)

• Classifies domain items into ItemM & ItemO items
 ▪ No ItemO items for C_{SAM}

• Constructs an UF-tree
 ▪ Scans the DB of uncertain data once
 ▪ Accumulates the expected support of each of the items
 ▪ Discards infrequent items
 ▪ Only captures frequent items in the UF-tree
 • Any infrequent ItemM or ItemO items can be safely discarded because any itemset containing an infrequent item is also infrequent
A2. Construction of an UF-Tree (2)

- Arranges \textbf{ItemM} items to appear below \textbf{ItemO} items
 - \textbf{ItemM} items are closer to the leaves
 - \textbf{ItemO} items are closer to the root
- Sorts all the items \textbf{ItemM} in non-ascending order of accumulated expected support
- Sorts all the items \textbf{ItemO} in non-ascending order of accumulated expected support
A2. Construction of an UF-Tree (3)

- Scans the DB the second time; inserts each transaction of the DB into the UF-tree
 - New transaction is merged with a child (or descendant) node of the root of the UF-tree (at the highest support level) only if the same item & the same expected support exist in both the transaction & the child (or descendant) nodes
 - For C_{SAM}, UF-tree captures only those frequent ItemM items
A3. Mining of Constrained Frequent Itemsets from the UF-Tree

• Extracts appropriate paths to form a projected DB for each x in ItemM
 - Does not need to form projected DBs for any y in ItemO because all itemsets satisfying C_{SUC} must be “extensions” of an item from ItemM (i.e., all valid itemsets must be grown from temM items)
 - For C_{SAM}, no ItemO items are kept in the UF-tree

• Recursively ...
 - constructs a UF-tree for each projected DB
 - mines all frequent itemsets that satisfy C_{SAM} or C_{SUC}
B. Finding Constrained Globally Frequent Itemsets (1)

• Each site/processor P_i (for $1 \leq i \leq p$)
 ▪ applies constraint checking & frequency checking to find locally frequent ItemM_i items (& ItemO_i items for C_{SUC})
 ▪ transmits locally frequent ItemM_i items (& ItemO_i items for C_{SUC}) to a centralized site/processor Q

• Centralized site/processor Q
 ▪ takes the union of these items
 ▪ broadcasts the union to all P_i's
B. Finding Constrained Globally Frequent Itemsets (2)

• Each P_i
 ▪ extracts these potentially globally frequent items from transactions in TDB_i & puts into an UF-tree
 ▪ UF-tree contains ...
 • items that are locally frequent w.r.t. P_i
 • items that are potentially globally frequent but locally infrequent items w.r.t P_i
 ▪ recursively applies the usual tree-based mining process to each α-projected DB (where locally frequent $\alpha \subseteq \text{ItemM}_i$) of the UF-tree at P_i to find constrained locally frequent itemsets (with local frequency info) & send these itemsets to Q (where the local frequencies are summed)

• If the sum of available local frequencies of a constrained itemset $X \geq$ minimum support threshold, then X is *globally frequent*

• For the case where a constrained itemset is locally frequent at a site P_1 but not at another site P_2, then Q sends a request to P_2 for finding its local frequency
Experimental Setup

- Datasets:
 - IBM synthetic data
 - Real-life DBs from ...
 - UC Irvine Machine Learning Depository
 - Frequent Itemset Mining Implementation (FIMI) Dataset Repository
Experimental Results (1)

• Accuracy
 ▪ As accurate as UF-growth
 (and they both returned the same collection of frequent itemsets)

• Flexibility
 ▪ More flexible than UF-growth
 • Our system is capable of finding frequent itemsets from distributed uncertain data with constraints of any selectivity
 • UF-growth is confined to those of 100% selectivity
Experimental Results (2)

• Effectiveness of constrained mining in a distributed environment
 ▪ When selectivity of constraints decreased,
 • amount of communication/data transmitted between the distributed sites P_i & their centralized site Q decreased
 • runtimes decreased
Experimental Results (3)

• Effects of varying #distributed sites
 ▪ When more sites were in the distributed network,
 • transmitted more data
 » because an addition of a site implies transmission of an additional set of locally frequent items and locally frequent itemsets
 • runtime increased slightly
 » because the extra communication time was offset by the savings in building and mining from a smaller UF-tree at each site
Experimental Results (4)

(a) Runtime vs. selectivity
(b) Runtime vs. minsup
(c) Runtime vs. existential probability
(d) Amt of transmitted data vs. selectivity
Thank you Grazie

• More info, please refer to our paper

 or

 contact us:

 dblab@cs.umanitoba.ca
 cuzzocrea@si.deis.unical.it