

SQL Nulls: Algebra and Logic

Enrico Franconi Sergio Tessaris

Free University of Bozen-Bolzano, Italy

<http://www.inf.unibz.it/~franconi>

SQL Nulls (Motivation)

- ▶ Peculiarity of **SQL Nulls**
 - ▶ 3-valued logics in the WHERE clause

$R :$

1	2
a	b
b	N

`SELECT * FROM R
WHERE R.1 = R.1 AND R.2 = R.2 ;`

\Rightarrow

1		2
---		---
a		b
(1 row)		

- ▶ **NOT** the identity query
 - ▶ with Null values as constants
 - ▶ with Null values as existentials

SQL Nulls: Algebra and Logic (Summary)

- ▶ Characterising SQL with a Null Relational Algebra
 - ▶ Properly extends the classical Relational Algebra with Null values
 - ▶ The Null value is in the syntax
 - ▶ The Null value is part of the domain
- ▶ A Null Relational Calculus (first-order logic)
 - ▶ Properly extends the classical Relational Calculus with Null values
 - ▶ The Null value is in the syntax
 - ▶ The Null value is *not* part of the domain
- ▶ Theorem: the Null Relational Algebra is **equally expressive** as the domain independent Null Relational Calculus
 - ▶ Properly extends the **Codd's theorem**

Consequences (Summary)

- ▶ Theorem: the Null Relational Algebra/Calculus can be *linearly* embedded in the classical Relational Algebra/Calculus
 - ▶ Horizontal Decomposition
- ▶ SQL Nulls do not introduce “incompleteness” in databases
 - ▶ The semantic of SQL Nulls is “missing information”
- ▶ The Null Relational Calculus can express precisely the integrity constraints as defined in the **SQL:1999** standard

Classical Relational Algebra (RA)

Atomic relation - R

Constant singleton - $\langle v \rangle$

Selection - $\sigma_{i=v} e$ - $\sigma_{i=j} e$

Projection - $\pi_{i_1, \dots, i_k} e$

Cartesian product - $e \times e'$

Union/Difference - $e \cup e'$, $e - e'$

$\sigma_{i <> v} e$

$\sigma_{i <> j} e$

$e \bowtie_{i_1=k_1, \dots, i_\ell=k_\ell} e'$

$e \cap e'$

Derived operators -

Null Relational Algebra (RA^N)

Null singleton - $\langle \mathbf{N} \rangle$

Selection - $\sigma_{i=j} e = \{t \in e \mid t[i] = t[j] \wedge t[i] \neq \mathbf{N} \wedge t[j] \neq \mathbf{N}\}$

Derived operators -

$\sigma_{i <> j} e \equiv \sigma_{i=i} \sigma_{j=j} e - \sigma_{i=j} e$

$\sigma_{i \text{isNull}(i)} e \equiv e - \sigma_{i=i} e$

$\sigma_{i \text{isNotNull}(i)} e \equiv \sigma_{i=i} e$

$\sigma_{i=\mathbf{N}} e \equiv e - e$

$\sigma_{i <> \mathbf{N}} e \equiv e - e$

$e \underset{i_1=k_1}{\bowtie} \underset{i_\ell=k_\ell}{\bowtie} e' \equiv (e \underset{i_1=k_1}{\bowtie} \underset{i_\ell=k_\ell}{\bowtie} e') \cup (e - \pi_{1,\dots,m}(e \underset{i_1=k_1}{\bowtie} \underset{i_\ell=k_\ell}{\bowtie} e')) \times (\underbrace{\langle \mathbf{N} \rangle \times \dots \times \langle \mathbf{N} \rangle}_{n-\ell})$

Provably equivalent to SQL SELECT-FROM-WHERE with 3-valued logic and set operators. (well...)

Null Relational Calculus ($\mathcal{FOL}^\varepsilon$)

- ▶ The Null Relational Calculus extends the classical relational calculus in order to take into account the possibility that some of the arguments of a relation might not exist.
- ▶ It is a first-order logic language (*domain calculus*):
 - ▶ with an uninterpreted term **N** in the syntax representing the null value,
 - ▶ and where an n -ary predicate denotes a set of tuples over *subsets* of the arguments instead of just their whole set of arguments – i.e., a **n -tuple** is represented as a **partial function** from the arguments to the domain.
- ▶ If n -tuples were just *total* functions, then a n -ary predicate would denote a set of classical n -tuples (1NF).

Example

The legal database states of the formula $R(a, b) \wedge R(b, N)$ are such that the denotation of R includes the tuples $\{1 \mapsto a, 2 \mapsto b\}$ and $\{1 \mapsto b\}$.

Horizontal Decomposition (1NF)

Theorem

The Null Relational Calculus can be linearly embedded in the classical Relational Calculus, with a bijective translation preserving the legal database states of the formulae.

► Horizontal Decomposition

Example

The formula $\exists x. R(a, x) \wedge R(x, N) \wedge R(N, N)$ over the signature R is translated as the \mathcal{FOL} formula $\exists x. \tilde{R}_{\{1,2\}}(a, x) \wedge \tilde{R}_{\{1\}}(x) \wedge \tilde{R}_{\{\}}$ over the decomposed signature \tilde{R} , and vice-versa.

$$R : \begin{array}{|c|c|} \hline 1 & 2 \\ \hline a & b \\ \hline b & N \\ \hline \end{array} \quad \Rightarrow \quad \tilde{R}_{\{1,2\}} : \begin{array}{|c|c|} \hline 1 & 2 \\ \hline a & b \\ \hline \end{array} \quad \tilde{R}_{\{1\}} : \begin{array}{|c|} \hline 1 \\ \hline b \\ \hline \end{array}$$

Codd's theorem with Null values

- ▶ There exists a polynomial **reduction** from the membership problem of a tuple in the answer of a \mathcal{RA}^N expression over a database instance with null values
- ▶ **into** the satisfiability problem of a closed safe-range $\mathcal{FOL}^\varepsilon$ formula over an homomorphic database ;
- ▶ **and** there exists a polynomial **reduction** from the satisfiability problem of a closed safe-range $\mathcal{FOL}^\varepsilon$ formula over a database instance with null values
- ▶ **into** the emptiness problem of the answer of a \mathcal{RA}^N expression over an homomorphic database.

Equivalence of Algebra and Calculus

Theorem

Let e be a \mathcal{RA}^N expression of arity n , and t a n -tuple as a total function with values taken from the set $\mathcal{C} \cup \{N\}$. There is a function $\Omega(e, t)$ translating e with respect to t into a closed safe-range $\mathcal{FOL}^\varepsilon$ formula, such that for any instance \mathcal{I} with the Standard Name Assumption:

$$t \in e(\mathcal{I}^N) \quad \text{if and only if} \quad \mathcal{I}^\varepsilon \models_{\mathcal{FOL}^\varepsilon} \Omega(e, t).$$

Theorem

Let φ be a safe-range $\mathcal{FOL}^\varepsilon$ closed formula. There is a \mathcal{RA}^N expression e , such that for any instance \mathcal{I} with the Standard Name Assumption:

$$\mathcal{I}^\varepsilon \models_{\mathcal{FOL}^\varepsilon} \varphi \quad \text{if and only if} \quad e(\mathcal{I}^N) \neq \emptyset.$$

Our first motivating example

$R :$

1	2
a	b
b	N

SELECT * FROM R
WHERE R.1 = R.1 AND R.2 = R.2 ;

\Rightarrow

1		2
---	---	---
a		b

(1 row)

Example

- ▶ Checking whether the tuple $\langle a, b \rangle$ or the tuple $\langle b, N \rangle$ are in the answer of the RA^N query $\sigma_{1=1} \sigma_{2=2} R$
- ▶ corresponds to check whether the tuple $\langle a, b \rangle$ or the tuple $\langle b, N \rangle$ are in the answer of the RA query $\sigma_{1=1} \sigma_{2=2} \sigma_{\text{isNotNull}(1)} \sigma_{\text{isNotNull}(2)} R$;
- ▶ and it corresponds to check the satisfiability over the database instance of the FOL^{ε} closed safe-range formula $R(a, b)$ for the tuple $\langle a, b \rangle$, or of the formula **false** for the tuple $\langle b, N \rangle$.

More Examples

1	2
a	b
b	N

1	2
a	a
a	N
N	a
N	N

- UNIQUE constraint for $R.1$: $\sigma_{1=3} \sigma_{2 \neq 4} (R \times R) = \emptyset$;
- NOT-NULL constraint for $R.1$: $\sigma_{\text{isNull}(1)} R = \emptyset$;
- UNIQUE constraint for $S.1$: $\sigma_{1=3} \sigma_{2 \neq 4} (S \times S) = \emptyset$,
- FOREIGN KEY constraint from $S.2$ to $R.1$:
 $\pi_2 \sigma_{\text{isNotNull}(2)} S - \pi_1 \sigma_{\text{isNotNull}(1)} R = \emptyset$.

- UNIQUE constraint for $R.1$
 - (RA^N) : $\sigma_{1=3} \sigma_{2 \neq 4} (R \times R) = \emptyset$.
 - (FOL^ε) : $\forall x, y, z. R(x, y) \wedge R(x, z) \rightarrow y = z$.
- FOREIGN KEY from $S.2$ to $R.1$:
 - (FOL^ε) : $\forall x, y. S(x, y) \rightarrow \exists z. R(y, z)$
 - (RA^N) : $\pi_2 \sigma_{\text{isNotNull}(2)} S - \pi_1 \sigma_{\text{isNotNull}(1)} R = \emptyset$.

Interesting Facts

- ▶ SQL Nulls do not introduce incompleteness in databases
 - ▶ The semantic of SQL Nulls is “missing information”
- ▶ The Null Relational Calculus captures exactly the integrity constraints as defined in the **SQL:1999** standard - without having the Null value in the domain