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Abstract. In current trends of consumer products market, the amount
of RFID data in supply chain management is vast, posing significant
challenges for attaining acceptable performance on their analysis. Cur-
rent approaches provide hard-coded solutions, with high consumption
of resources; moreover, these exhibit very limited flexibility dealing with
multidimensional queries, at various levels of granularity and complexity.
In this paper we propose a general model for supply chain management
based on the first principles of linear algebra, in particular on tensorial
calculus. Leveraging our abstract algebraic framework, our technique al-
lows both quick decentralized on-line processing, and centralized off-line
massive business logic analysis, according to needs and requirements of
supply chain actors. Experimental results show that our approach, uti-
lizing recent linear algebra techniques can process analysis efficiently.

1 Introduction

In the management of a supply chain, main retailers are investing in new tech-
nologies in order to boost the information exchange. To this aim, RFID, the
Radio-Frequency Identification, is a recent potential wireless technology. An
RFID application usually generates a stream of tuples, usually called raw data,
of the form of a triple (e, l, t), where e is an EPC, l represents the location where
an RFID reader has scanned the e object, and t is the time when the reading
took place. Other properties can be retrieved, e.g., temperature, pressure, and
humidity. A single tag may have multiple readings at the same location, thus
potentially generating an immense amount of raw data. Therefore, a simple data
cleaning technique consists in converting raw data in stay records of the form
(e, l, ti, to), where ti and to are the time when an object enters or leaves a loca-
tion l, respectively. In this manuscript, we address the challenging problem of
efficiently managing the tera-scale amount of data per day, generated by RFID
applications (cf. [1], and [2,6,7]), focusing on stay records as the basic block to
store RFID data.
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Contribution. Leveraging such background, this paper proposes a general
model of supply chains, mirrored with a formal tensor representation (i.e. a
generalization of linear forms, usually represented by matrices) and endowed
with specific operators, allowing both quick decentralized on-line processing,
and centralized off-line massive business logic analysis, according to needs and
requirements of supply chain actors.

Outline. Our manuscript is organized as follows. In Section 2 we will briefly
recall the available literature. The general supply chain model, accompanied by
a formal tensorial representation is supplied in Section 3, subsequently put into
practice in Section 4, where we provide the reader a method of analyzing RFID
data within our framework. We benchmark our approach with several test beds,
in Section 5, while Section 6 sketches conclusion and future work.

2 Related Work

In a real scenario, great lapse and huge amounts of data are generated. To this
aim, knowledge representation techniques focus on operating deep analysis in
such systems. An alternative approach [6] consists in warehousing RFID data
and performing multidimensional analyses on the warehouse. The focus here is
on data compression techniques and on storage models with the goal of achieving
a more expressive and effective representation of RFID data. A straightforward
method is to provide a support to path queries (e.g., find the average time
for products to go from factories to stores in Seattle) by collecting RFID tag
movements along the supply chain. Usually, the tag identifier, the location and
the time of each RFID reading is gathered and stored in a huge relational table.
Lee et al. have proposed an effective path encoding approach to represent the
data flow representing the movements of products [7]. In a path, a prime number
is assigned to each node and a path is encoded as the product of the number
associated with nodes. Mathematical properties of prime numbers guarantee the
efficient access to paths. A major limitation of the majority of these approaches
have to fix the dimensions of analysis in advance to exploit ad-hoc data structures
to be maintained. It follows that, in many application scenario the compression
loses its effectiveness and the size of tables does not be reduced significantly.
Therefore we have a limited flexibility when multidimensional queries, at varying
levels of granularity and complexity, need to be performed.

3 RFID data Modeling

This section is devoted to the definition of a general model capable of represent-
ing all aspects of a given supply chain. Our overall objective is to give a rigorous
definition of a supply chain, along with few significant properties, and show how
such representation is mapped within a standard tensorial framework.
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3.1 A General Model

Let us define the set E as the set of all EPCs, with E being finite. A property
of an EPC is defined as an application π : E → Π, where Π represents a
suitable property codomain. Therefore, we define the application of a property
π(e) := 〈π, e〉, i.e., a property related to an EPC e ∈ E is defined by means of
the pairing EPC-property; a property is a surjective mapping between an EPC
and its corresponding property value. A supply chain is defined as the product
set of all EPCs, and all the associated properties. Formally, let us introduce the
family of properties πi, i = 1, . . . , k + d < ∞, and their corresponding sets Πi;
we may therefore model a supply chain as the product set

S = E ×Π1 × . . .×Πk−1 ×Πk × . . .×Πk+d . (1)

3.2 Properties

In the following we will focus on some of the properties related to EPCs, i.e.,
we will model some codomains Π and their associated features.
Location. Let us briefly model the location associated to an EPC. It is common
to employ a GPS system in order to track the position on earth, however, any
fine-grained space is sufficient to our purposes. In particular, being the earth
homeomorphic to a 3-sphere, any ordered triple of real numbers suffices, leading
us to the following definition:
Definition 1 (Location) Let L be the set of ordered tuples ` := (`1, `2, `3), with
`1, `2, `3 ∈ R. We name L as location set, `1, `2 and `3 as location coordinates.
Time. In order to model a temporal interval relative to a product (EPC),
we resort to an ordered couple of elements from the ring of real numbers. This
suffices to specify, e.g., the entry and exit time of a product from a given location.
With this point of view, we model time as follows:
Definition 2 (Time) Let T be the set of ordered couples τ := (ti, to), with
ti, to ∈ R. We name T as time set, ti and to as incoming and outcoming
timestamps, respectively.

Definition 3 (Inner sum) Let us define the inner sum of two time elements
τ1 = (t1i , t

1
o), τ2 = (t2i , t

2
o) as the operator ⊕ : T × T → T :

τ1 ⊕ τ2 :=
(

min(t1i , t
2
i ),max(t1o, t

2
o)
)
.

With the above operator, we have that (T ,⊕) assumes the algebraic structure
of an abelian group. Such operation allows us to rigorously model the “addition
of products”: the overall timeframe of two products is, in fact,
Definition 4 (Lifetime) We define as lifetime the linear form λ : T → R
defined as follows: 〈λ, τ〉 := to − ti , τ = (ti, to) ∈ T .
Due to the linearity, we are allowed to construct equivalence classes in T as

[τ̃ ] := {τ ∈ T : 〈λ, τ〉 = 〈λ, τ̃〉} . (2)

The canonical representative elements of the above equivalence classes are de-
fined as (0, to), with to ∈ R.
Definition 5 (Admissible time) Given a time element τ ∈ T , we say that
τ = (ti, to) is admissible iff 〈λ, τ〉 > 0, with ti, to > 0 .
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3.3 Tensorial Representation

Let us now introduce a formal tensorial framework capable of grasping all prop-
erties related to a supply chain, as proposed in Section 3.1. We divide properties
into two categories, countable and uncountable spaces. This separation allows
us to represent countable spaces with natural numbers, therefore mapping their
product space to Nk, while leaving the product space of all uncountable proper-
ties into a collective space U:

S = E ×Π1 × . . .×Πk−1︸ ︷︷ ︸
Nk

×Πk × . . .×Πk+d︸ ︷︷ ︸
U

. (3)

Such mapping will therefore introduce a family of injective functions called
indexes, defined as: idxi : Πi −→ N with i = 1, . . . , k − 1 . When considering
the set E , we additionally define a supplemental index, the EPC index function
idx0 : E → N, consequently completing the map of all countable sets of a supply
chain S to natural numbers.

Definition 6 (Tensorial Representation) The tensorial representation of a
supply chain S, as introduced in equation (1), with countability mapping as in (3)
is a multilinear form Σ : Nk −→ U .

A supply chain can be therefore rigorously denoted as a rank-k tensor with
values in U, mapping countable to uncountable product space.

3.4 Implementation

Preliminary to describing an implementation of our supply chain model, based on
tensorial algebra, we pose our attention on the practical nature of a supply chain.
Our treatment is general, representing a supply chain with a tensor, i.e., with
a multidimensional matrix. Supply chain rarely exhibit completion: practical
evidence [5] suggests that products, identified by their EPC, for example, seldom
present themselves in every location. The same consideration applies also to other
properties, in particular, to countable properties. Hence, our matrix effectively
requires to store only the information regarding connected nodes in the graph:
as a consequence, we are considering sparse matrices [3], i.e., matrices storing
only non-zero elements.

Example 1. Let us consider the supply chain pictured in Fig. 1, described ten-
sorially by Σ : N2 → T , whose representative matrix is as follows:




(0, 2) · · (5, 7) · (8, 10) · ·
· · (0, 3) · · · · (4, 9)

(0, 1) · · (4, 5) · · (6, 9) ·
· (0, 4) · · (5, 6) · · (8, 9)
· · (0, 5) · (6, 7) · · (9, 11)




where, for typographical simplicity, we omitted 0T = (0, 0), denoted with a dot.
For clarity’s sake, we outline the fact that Σ is a rank-2 tensor with dimensions
5 (i.e. the rows), 8 (i.e. the columns). In fact, we have
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Fig. 1. An example supply chain represented by a directed graph. Callouts represent
lists of tuple constituted by an EPC with the associated time (ti, to).

E = {E10, E11, E12, E13, E14} ,
Π1 = {L1, L2, L3, L4, L5, L6, L7, L8} ,

where idx0(E10) = 1, idx0(E11) = 2, . . ., idx0(E14) = 5, and similarly idx1(L1) =
1, . . ., idx1(L8) = 8. In the sparse representation we have {{1, 1} → (0, 2), {1, 4} →
(5, 7), . . . , {5, 8} → (9, 11)}.

4 RFID data Analysis

Based on our conceptual framework, in this section we will provide a method to
analyze RFID data represented by a tensor.

Tracking Query. A tracking query finds the movement history for a given
tag identifier e ∈ E . We can comfortably perform the query efficiently, using the
model described in Section 3, by applying the tensor application. Therefore, given
i = idx(e), we build a Kroneker vector as a vector δi, with |δi| = |E|, and finally
apply of the rank-2 tensor represented by Mij to δi: r = Mijδi . For instance, re-
ferring to the example pictured in Fig. 1, let us consider the tag E13, we have i =
idx(E13) = 4, and therefore our vector will be δ4 = {{4} → 1}. Consequently,
the resulting vector will be r =Mijδ4 = {{2} → (0, 4), {5} → (5, 6), {8} → (8, 9)}
or in another notation, L2→ L5→ L8.

Path Oriented Query. A path oriented query returns the set of tag identi-
fiers that satisfy different conditions. Following the query templates given in [7],
we subdivide path oriented queries into two main categories: path oriented re-
trieval and path oriented aggregate queries. The former returns all tags covering
a path satisfying given conditions, while the latter computes an aggregate value.
It is possible to formulate a grammar for these queries, similar to XPath expres-
sions; in particular, path oriented retrieval and path oriented aggregate queries
are respectively indicated as follows: L1[cond1]//L2[cond2]// . . . //Ln[condn] or
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L1[cond1]/L2[cond2]/ . . . /Ln[condn], where L1, . . . Ln is the path condition, i.e.,
the sequence of locations covered by the tag, and condi is the info condition; for
more information about such expressions, we refer the reader to [7]. A path con-
dition expresses parenthood between locations, indicated as Li/Lj , or ancestry
with Li//Lj ; an info condition, on the other hand, indicates conditions on tag
properties, e.g., StartT ime and EndTime.

In our framework, a path oriented retrieval query is easily performed by
exploiting the tensor application coupled with the Hadamard product. Given
the location set L, for each z = idx(Lk), with k = 1, . . . , n, we create a Kroneker
vector δz and subsequently apply the rank-2 tensor, resulting in a set of vectors
rz = Mijδj , where for typographical reasons, we dropped the subscript intending
δ ≡ δz. Finally, we apply the condition function to each rz employing the map
operator. This yields a set of vectors

r̃z = map(condz, rz) , condz : Nk × U −→ F ,

whose Hadamard multiplication generates the final result: r̄ = r̃1 ◦ . . . ◦ r̃n,
reminding the reader that only non-zero values are stored, and therefore given
as a result of a computation. The cond functions, as indicated above, are maps
between properties of supply chains and a suitable space F, e.g., natural numbers
for a boolean result. For an example, referring to Fig. 1, let us consider the query

L3[StartT ime > 0]//L8[EndTime− StartT ime < 4] .

In this case, given idx(L3) = 3 and idx(L8) = 8, we build δ3 and δ8, and
generate the partial results : r3 = Mijδ3 = {{2} → (0, 3), {5} → (0, 5)} and
r8 = Mijδ8 = {{2} → (4, 9), {4} → (8, 9), {5} → (9, 11)}, where evidently the
application was performed along the second dimension, i.e., for each δ ∈ {δ3, δ8},
we compute Mijδj . Finally, subsequent to mapping conditions on the results, in
this case cond3 = ti(·) > 0 and cond8 = 〈λ, ·〉 < 4, we obtain the correct outcome
r̄ = r̃3 ◦ r̃8 = {{5} → (9, 11)}, i.e., E14.

Considering parenthood instead of ancestry, i.e., Li/Lj , we briefly sketch
the fact that such query does not, in fact, differ from the above, except for
one particular: each resulting EPC, when subject to a tracking query, produces
a sparse vector whose length, i.e., the number of non-zero stored elements, is
exactly equal to the number of locations under analysis.

Path oriented aggregate queries may be represented as 〈f,Q〉 =: f(Q) where
f is an aggregate function, e.g., average or minimum, and Q is the result of a
path oriented retrieval query. Therefore, let r̄Q be the result of Q, and let f be
a function defined on vectors of supply chain elements, we simply have that a
path aggregate may be expressed as f(r̄Q). Referring to Fig. 1, let us consider
the query expressed in the grammar of [7]: 〈AV G[L8.StartT ime], //L8〉. It is
easily performed by applying the function f := average(ti) to the outcomes of
the path oriented retrieval query on L8, resulting in r̄ = average({4, 8, 9}) = 7.

5 Experiments

We performed a series of experiments aimed at evaluating the performance of
our approach, reporting the main results in the present section.
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Environment. Our benchmarking system is a dual core 2.66 GHz Intel with 2
GB of main memory running on Linux, where we implemented our framework1 in
C++ within the Mathematica 8.0 computational environment. Our results have
been compared to the ones from the approach in [7], tested against a generated
synthetic RFID data in terms of stay records, and considering products moving
together in small groups or individually, a behavior called IData in [7]: data
production followed the same guidelines on a supply chain of 100 locations.
Finally the complete data set comprises 105, 5 · 105, 106, 5 · 106, and 107 stay
records. In the following, we will denote our tensorial approach T, while the
proposed one in [7] with P.

Results. Performances have been measured with respect to data loading and
querying. Referring to the former, the main advantage of our approach is that
we are able to perform loading without any particular relational schema, when
compared to P, where a schema coupled with appropriate indexes have to be
maintained by the system. In this case, loading execution times are 0.9, 11,
and 113 seconds, for sets of 105, 106, and 107 stay records, respectively; on the
contrary, P timings were in order of minutes and hours. Another significant
advantage of T relies in memory consumption: we need 13, 184, and 1450 MB to
import the above mentioned sets; as a side-note, we highlight the fact that the 107

set required a division in smaller blocks, e.g., 106, due to the limited memory
at disposal. With respect to query execution, T presents a similar behavior
and advantages with respect to P, for both time and memory consumption. We
performed cold-cache experiments, i.e., dropping all file-system caches before
restarting the systems and running the queries, and repeated all the tests three
times, reporting the average execution time. As in [7], we formulated 12 queries
to test the two systems as reported in [4]. In brief, Q1 is a tracking query, Q2
to Q5 are path oriented retrieval queries, while Q6 to Q12 are path oriented
aggregate queries. Due to the nature of P, we were able to perform a comparison
only on centralized off-line massive analysis. A significant result is the speed-up
between the two approaches, as shown in Fig. 2.(a); again, Q1 label is dropped
due to typographical causes. We computed the speed-up for all data sets as the
ratio between the execution time of P, and that of our approach T, or briefly
S = tP/tT . In general, T performs very well with respect to P in any dataset,
particularly for queries related to the object transition, e.g., Q2, Q4, Q5, Q10.
The query performance of T is on the average 19 times better than that of P,
150 times on the maximum, i.e., Q10. Another strong point of T is a very low
consumption of memory, due to the sparse matrix representation of tensors and
vectors. Fig. 2.(b) illustrates the main memory consumption of each query with
respect to 105, 106, and 107 stay records. On the average, tracking queries require
very few bytes of memory for any dataset, path oriented queries few KBytes,
topping 1 MB for 107. Results demonstrate how our approach can be used in
a wide range of applications, where devices with limited calculus resources may
process large amount of data in an efficient and effective way.

1 A prototype implementation is available at http://pamir.dia.uniroma3.it:8080/
SimpleWebMathematica
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(a) (b)

Fig. 2. (a) Speed-up logarithmic graph for all queries with 105 (solid), 106 (dashed),
and 107 (dotted). (b) Main memory consumption for each query: black bars refer to
105, dark gray to 106, and light gray to 107 data size.

6 Conclusion and Future Work

We have presented an abstract algebraic framework for the efficient and effective
analysis of RFID data in supply chain management. Our approach leverages ten-
sorial calculus, proposing a general model that exhibits a great flexibility with
multidimensional queries, at diverse granularity and complexity levels. Experi-
mental results proved our method efficient when compared to recent approaches,
yielding the requested outcomes in memory constrained architectures. For future
developments we are investigating the introduction of reasoning capabilities,
along with a thorough deployment in highly distributed Grid environments. In
addition, we are about to test our model on mobile devices, comprising more
complex properties and queries.
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