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Abstract. Relaxation skyline queries have been proposed, in the re-
lational context, as a solution to the so-called empty answer problem.
Given a query composed of selection and join operations, a relaxation
skyline query relies on the usage of a relaxation function (usually, a nu-
meric function) to quantify the distance of each tuple (pair of tuples
in case of join) from the specified conditions and uses a skyline-based
semantics to compute the answer. Though the empty answer problem
is extremely relevant also in a streaming context, where users may not
be acquainted with the actual data arriving on the stream, it has been
largely neglected. Specifically, no solutions have been proposed so far
for skyline-based relaxation over data streams. In this paper, we define
relaxation skyline queries for window-based join over data streams, pro-
pose one processing algorithm and present a preliminary experimental
evaluation of the designed technique.

1 Introduction

The last decade has been characterized by the raise of data intensive applica-
tions, with new data querying needs, and novel processing environments. Data
integration applications, Web services, sensor networks, data stream manage-
ment systems, P2P, cloud computing, and hosting are only few examples of
these emerging technologies. The novel processing requirements related to these
new contexts made traditional query processing approaches unsatisfactory and
required the development of specific advanced query processing techniques.

One specific issue for such advanced techniques concerns approximation. In-
deed, data characteristics (e.g., heterogeneity, incompleteness, and uncertainty),
resource limitations, huge data volumes, and volatility, typical of emerging ap-
plications and technologies, suggest it may be preferred to relax the query defi-
nition, using Query Relaxation techniques, or to generate an approximate result
set, with quality guarantees, using Approximate Query Processing techniques,
instead of getting an unsatisfactory answer. An answer can be unsatisfactory
because either the user has to wait too long for getting the result, or the answer
is empty, or the answer contains too many tuples.

In this paper we are interested in Query Relaxation techniques for solving the
empty answer problem. Two different approaches have been provided to address
this issue: the first approach relies on techniques for rewriting the query using
weaker conditions, in order to get a larger answer set [8, 10, 15]; the second ap-
proach exploits quantitative or qualitative preferences in order to relax the query
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and returning the best results, leading to the definition of top-k [7] and skyline
queries [3]. Skyline queries rely on qualitative preferences and determine best re-
sults in terms of a partial relation among items, defined as a dominance relation
with respect to a set of given attributes (representing the user preference), by
returning those items that are not dominated by any other item (skyline items).1

With respect to the second group of approaches, relaxation skyline (r-skyline)
queries have been proposed in the relational context with the aim of using some
system-defined preferences for relaxing selection and join conditions and avoid
the empty answer problem [9]. The basic idea of r-skyline queries is to use a
relaxing function (usually, a numeric function) to quantify the distance of each
tuple (pair of tuples in case of join) from the specified conditions and to rely
on a skyline-based semantics to compute the results. The relaxed evaluation of
the query thus provides a non-empty answer while being close to the original
query formulated by the user. Relaxation skyline queries have been proposed for
stored relational data [9] and a similar approach has been provided for sensor
networks [11].

While the empty answer problem has been deeply investigated for stored
data, few proposals exist for data stream management. In this context, as dis-
cussed in [5], several approximation approaches have been proposed to deal with
limited or constrained resource availability during data stream processing. How-
ever, only few approximation techniques finalized at improving the quality of
result, either in terms of completeness or accuracy, have been defined. Such
techniques would however be very useful in the streaming context, where the
limited knowledge of the users about the actual data arriving on the stream
may often lead to the execution of queries returning an unsatisfactory answer,
e.g., queries that return an empty result over several windows.

This paper addresses this problem by presenting some preliminary results
of an on-going research concerning the definition of relaxation queries and re-
lated processing techniques for data streams. In particular, the contribution of
the paper concerns the definition of r-skyline queries for window-based join over
data streams and a related processing algorithm. The proposed algorithm has
been obtained by integrating the approaches presented in [12], for processing
skyline queries over a single data stream, and in [9], for processing r-skylines
for stored relational data, and extending them to deal with r-skylines over se-
lection and window-based join queries. A preliminary experimental evaluation
of the designed technique is also presented, showing the impact of relaxation on
performance.

The paper is organized as follows. Section 2 introduces basic concepts on data
streams and presents r-skyline queries. A processing algorithm for r-skylines is
then presented in Section 3 while preliminary experimental results are reported
in Section 4. Some concluding remarks about the obtained results and next steps
we plan to follow in our research are then provided in Section 5.

1 Given a set of points, each corresponding to a list of values for the relevant attributes,
a point A dominates a point B if it is better in at least one dimension and equal or
better in all the others, with respect to some ordering [3].
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2 Relaxation skyline queries for data streams

A data stream is a continuous, unbounded, and potentially infinite sequence of
data (tuples, in this paper). In a data stream, each item is associated with a
timestamp, either assigned by the source dataset or by the system at arrival
time. Queries over data streams can be either one-time, if they are evaluated
once on a given subset of data, or continuous, if they are continuously evaluated
as soon as new data arrive. According to STREAM [1], continuous queries can be
evaluated over data streams and time-varying relations. A time-varying relation
is a function that maps each time value to a set of tuples, representing the relation
state (i.e., a classical relation) at a certain time instant. Continuous queries are
evaluated at each time instant on the relation states and on the subsets of the
data streams available at that instant. Window operators are applied on streams
in order to compute, at each time instant, a subset of the items arrived so far.
Windows can be either time-based, if all the tuples arrived in the last k time
units are retained, or count-based, in case the last k tuples are retained.

Example 1. Consider an e-commerce application, dealing with two data streams,
Order and Delivery, containing tuples concerning customer orders (orderID,
customer, cost, dateOrder) and product delivery (orderID, clerk, dateOrder).
We are interested in determining, in a continuous way, information about orders,
whose cost is equal to 500 Euro, related to deliveries performed in the last 3
minutes. The corresponding STREAM’s CQL [2] query is:

SELECT o.orderID, o.customer

FROM Order o [unbounded], Delivery d [RANGE 3 Minutes]

WHERE o.cost = 500 and o.orderID = d.orderID

In the query, [unbounded] and [RANGE 3 Minutes] are two window opera-
tors. At each time instant, the first one returns the set of tuples arrived from
the beginning of the stream up to now; the second one returns the set of tuples
arrived in the last 3 minutes. ♦

The concept of relaxation skyline (r-skyline), first introduced in [9] for stored
data, extends the concept of skyline query [3] to deal with derived attributes,
each representing the distance of the considered tuple (pair of tuples, in case of
join) to a condition contained in the query. In the following, we consider queries
corresponding to a binary join over two data streams, followed by a number
of selections. Distances between tuples and query conditions can be computed
using a relaxation function defined as follows.

Definition 1 Let S and T be two data streams. Let C1 = S.Ai θ v and C2 =
S.Ai θ T.Aj, where θ is a comparison operator, Ai is an attribute of S, Aj is
an attribute of T , and v is an allowed value for attribute Ai. Let s be a tuple
in S and t a tuple in T . Function RELAX over (s, C1) returns 0 if s.Ai θ v,
|s.Ai − v| otherwise. Function RELAX over (s, t, C2) returns 0 if s.Ai θ t.Aj,
|s.Ai − t.Aj | otherwise. In the following, RELAX(s, t, Q), s ∈ S, t ∈ T denotes
the values of function RELAX computed for each condition in Q with respect
to tuples s and t. �
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tuple orderID customer cost dateOrder τ
o1 0001 James 600 07/11/2010 1
o2 0002 Thomas 150 07/11/2010 2
o3 0003 Thomas 300 07/11/2010 3
o4 0004 Nick 650 07/11/2010 4
o5 0005 Nick 500 09/11/2010 5
o6 0006 Nick 100 09/11/2010 6
o7 0007 James 300 10/11/2010 7
... ... ... ... ... ...

tuple orderID clerk dataOrder τ
d1 0001 Simon 08/11/2010 3
d2 0002 Jack 13/11/2010 4
d3 0003 Jack 13/11/2010 5
d4 0004 Simon 14/11/2010 6
d5 0005 Simon 14/11/2010 7
d6 0006 Simon 14/11/2010 8
d7 0007 Jack 15/11/2010 9
... ... ... ... ...

Table 1. Data streams Order (left) and Delivery (right)

The following definition adapts the definition of dominance and relaxation
skyline given in [9] to data streams.

Definition 2 Let Q be a query, S and T be two data streams, s1 and s2 be
tuples of S, t1 and t2 be tuples of T , w1 and w2 be two window operators. The
pair of tuples 〈s1, t1〉 dominates (�) the pair 〈s2, t2〉 if: (i) relaxed values in
RELAX(s1, t1, Q) are lower than or equal to all the corresponding relaxed values
in RELAX(s2, t2, Q); (ii) at least one relaxed value in RELAX(s1, t1, Q) is
lower than the corresponding relaxed value in RELAX(s2, t2, Q).

The r-skyline of S and T with respect to Q, w1 and w2, denoted as rs(S, T,Q,
w1, w2), is the relation that at time τ contains the tuples in (S[w1] × T [w2])(τ)
that are not dominated by any tuple in (S[w1]× T [w2])(τ). �

Example 2. Consider Example 1 and the relations in Table 1, representing a por-
tion of data streams Order and Delivery. Timestamps τ are progressive integer
numbers, corresponding to the arrival minute. When applying the relaxation
function RELAX to condition C ≡ Orders.cost = 500 and tuples o1, o2, o3,
the following values are obtained: RELAX(o1,C1) = 100, RELAX(o2,C1) =
350, RELAX(o3,C1) = 200. Now consider the query of Example 1. Relaxing
only condition C (since the join condition relies on order identifiers, which can-
not be approximated in a relevant way), r-skyline computation is performed as
follows:

– at times τ = 1, τ = 2, the result set is empty (no join);
– at τ = 3, join execution returns just one pair 〈o1, d1〉, which is in turn

returned as result of the r-skyline at time 3;
– at τ = 4, the matching pairs are 〈o1, d1〉 and 〈o2, d2〉; based on Definition 2,

〈o1, d1〉 � 〈o2, d2〉 and 〈o1, d1〉 is returned as result of the r-skyline at time 4;
– at τ = 5, the matching pairs are 〈o2, d2〉 and 〈o3, d3〉, tuple d1 has already

expired; based on Definition 2, 〈o3, d3〉 � 〈o2, d2〉 and 〈o3, d3〉 is returned as
result of the r-skyline at time 5. ♦

3 Relaxation skyline processing over window-based joins

In this section, we describe a processing algorithm (denoted by NRJL - Non
Relaxed Join Lazy) for r-skyline queries over data streams. The proposed algo-
rithm is obtained by merging the Pruning Join algorithm presented in [9] for
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Fig. 1. NRJL Reference architecture

relational data with the Lazy method presented in [12], for skyline computation
over data streams. In the following, we assume that all conditions in the query
are relaxed except join conditions. This approach is useful, for instance, when
join conditions rely on automatically generated semantic-less identifiers.

Fig. 1 shows the architecture at the basis of our technique. To achieve inde-
pendence on the tuple input rate, arriving tuples are placed in an input buffer
(an alternative solution would be that of discarding some input tuples, relying on
some load shedding approach [13], or summarizing arrived tuples through syn-
opses [4]). The architecture can be divided into two parts. The first part executes
the window-based join of the input streams, S and T , considering two arbitrary
windows, w1 and w2, one for each stream. Any join algorithm can be employed.
In the following, we assume that symmetric hash join [14] is employed. This
algorithm keeps a hash table for each data stream, indexing the tuples in the
current window. Each time a new tuple arrives, it is added to the corresponding
hash table and probed against the other hash table. Pairs of tuples generated
by the join module are stored in a buffer, in ascending order of their arrival
time. Arrival and expire times of pairs of matching tuples depend on the arrival
and expire time of the composing tuples. More precisely, if the join algorithm
generates the pair 〈s, t〉 and as, at, w1, w2 are the arrival times and windows of
S and T , respectively, then the arrival time of the pair is a = max(as, at) while
the expiration time of the pair is e = min(as + w1, a

t + w2).
After computing the join, the second part of the architecture deals with r-

skyline computations over window-based join results. Skyline computation is
realized through two main modules: a pre-processing module (PM) and a main-
tenance module (MM). Module PM is activated as soon as a new pair of tuples
〈s, t〉 is returned by the join module. It performs two main tasks: (i) relaxing
selection conditions by generating one d-dimensional tuple u, corresponding to
RELAX(s, t, Q) (see Definition 1); (ii) storing u inside a database DB, parti-
tioned into DBsky and DBrest, which store tuples that are and are not in the
current skyline, respectively. These last tuples are maintained since they may
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Query W 400 800 1600 3200 6400

Q2 uniform 2 2 3 3 7

Q2 anticorrelated 2 7 11 11 10

Q4 uniform 7 7 12 10 8

Q4 anticorrelated 16 19 21 21 22

Table 2. DBsky average sizes corresponding to varying window sizes

become skyline points after some skyline point expires (see [12] for details). More
precisely, if u is dominated by tuples in DBsky , u is inserted in DBrest, otherwise
tuples dominated by u in DBsky are dropped and u is inserted in DBsky as a
new skyline point.

Module MM handles expiring tuples. It is invoked each time a skyline tuple
u in DBsky expires. As first step, MM drops u from DBsky . At this point, some
tuples in DBrest may become new skyline tuples. To perform such computations,
MM, as a second step, drops all expired tuples from DBrest and determines the
tuples in DBrest dominated by u. For each of such tuples r′, it checks whether
other tuples in DBsky exist dominating r′. r′ is added to set U only if no other
tuple in DBsky dominates it. Finally, the skyline of set U is computed, to find
the tuples to be moved from DBrest to DBsky .

In order to efficiently performs search operations against repositories, we
assume relaxed tuples inside DBsky and DBrest are indexed using R-trees [6].

4 Preliminary experimental results

The goal of the experimental evaluation is to investigate the impact of relax-
ation on performance. To this aim, we consider: (i) processing time of individual
tuples; (ii) amortized processing time, computed as the sum of processing times
of individual tuples, divided by the number of processed tuples.

In the experimental evaluation, data streams consists of tuples with three
attributes. Each attribute has the interval [0, 1] as domain. Experiments have
been executed on queries composed by a join and several selections (equality
checks with 0). We suppose that the time-based window is recomputed upon
each new tuple arrival. Windows of size 400, 800, 1600, 3200, 6400 seconds have
been considered. Due to the presence of buffers, the experimental evaluation
does not depend on the tuple arrival frequency; however, we considered a tuple
arrival every 5 seconds. Assuming an alternate arrival between the two streams,
this means that each stream produces a tuple every 10 seconds.2 Finally, we
assumed that each stream contained 30 windows, resulting in a minimal stream
size of 1200 tuples and a maximal stream size of 19200 tuples.

Input data have been generated through an automatic generator, following
the techniques proposed in [3], using two distinct distributions: uniform and

2 We remark that, due to the join computation, the tuple arrival frequency for modules
PM and MM will be much higher and, every second, it will correspond to the average
number of matching pairs (about 20 in the performed experiments).
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Fig. 2. (a) Amortized cost at varying window size for uniform distribution; (b) Indi-
vidual tuple processing time for uniform distribution

anticorrelated. Skyline size and thus of processing time [12] are known to be
badly influenced by anticorrelated distributions. In our context, since the skyline
is computed on join result, an anticorrelated distribution could be imposed on
join result, and not only on the inputs. This experiment is left as future work.

Two query types have been considered:Q4, containing one selection condition
for each attribute and all them are relaxed (for a total of four relaxed conditions),
and Q2, containing one selection condition for each attribute and only one of
them is relaxed for each stream (for a total of two relaxed conditions).

Exp. 1. The average size of the r-skyline in each time instant, corresponding to
the average size ofDBsky , is determined. The size grows in the number of relaxed
conditions: each query type corresponds to a skyline computation on tuples of a
given dimension and the skyline size is known to grow in the dimension of the
input tuples. Table 2 shows the average dimension of DBsky depending on data
distribution and window size. The skyline points for the uniform distribution are
always fewer than or equal to those for the anticorrelated distribution.

Exp. 2. Amortized time of NRJL is compared with that of the precise (i.e.,
without condition relaxation) query. Precise queries are executed as follows: as
soon as a new tuple r arrives, we check whether r meets the selection conditions
stated for the stream. If all such conditions are met, the symmetric hash join is
executed, obtaining the tuples matching r. Fig. 2(a) shows the variation in the
average amortized time (in seconds) for queries executed over the various window
sizes, for the uniform distribution (results for anticorrelated distribution are
similar). The precise query processing time is considerably lower than the time
required for relaxed execution. In the precise processing, indeed, no auxiliary
data structures, need to be maintained and no relaxation is applied.

Exp. 3. The processing time for each single tuple, starting from the time in-
stant at which the join window becomes full, is analyzed. Fig. 2(b), represents
the average individual tuple processing time for NRJL. All processing times are
not null, even if, due to a scale problem, they look as they were. Peaks repre-
sent the activations of the MM module. Similar results were obtained for the
anticorrelated distribution.
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5 Discussion and conclusion

An ongoing work concerning the processing of relaxed queries over data streams
has been presented. The concept of relaxation skyline has been extended to
data streams and a processing algorithm has been described. Preliminary exper-
imental results show that, as expected, relaxing queries penalizes performance.
Performance can be improved in at least two ways, currently under investiga-
tion. One approach consists in designing more efficient algorithms for relaxation
skyline computation. Algorithms anticipating some skyline computation dur-
ing window-based join execution, or reducing the size of the maintained state
information, should be investigated. The second direction is to adopt an adap-
tive processing approach to switch from precise queries to skyline-based ones
as soon as, based on some dynamically monitored QoD parameters, the system
understands that this is needed for improving result quality. A switch from a
skyline-based computation to a precise one will occur as soon as parameters
indicate that a precise computation can generate a satisfactory result.
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