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Abstract. Data Stream Management Systems (DSMS) have attracted
much interest, and various extensions of relational-database query lan-
guages have been proposed for data streams. However, relational query
languages were built on the solid bedrock of logic, while current DSMS
languages and their computation models are missing such foundations.
In this paper, we show that continuous queries can be characterized using
the familiar concepts of closed-world and local stratification, leading to
Streamlog that allows a freer and more natural usage of nonmonotonic
constructs than Datalog. Thus, Streamlog takes the query languages of
DSMS to new levels of expressive power and removes the limitations that
severely impair current commercial systems and research prototypes.

1 Introduction

Data stream management systems represent a vibrant area of new technology
for which researchers have extended database query languages to support con-
tinuous queries on data streams [2, 1, 5, 7, 12, 4, 15]. These database-inspired ap-
proaches have produced remarkable systems and applications, but have yet to de-
liver solid theoretical foundations for DSMS data models and query languages—
particularly if we compare to those of relational and deductive databases that
delivered concepts and models of great power and elegance [8, 16, 17]. Thus in
this paper, we show that logic provides a natural formalism and simple solutions
for many of the difficult problems besetting DSMS: by using concepts such as
Reiter’s Closed World assumption [14] and local stratification[13] we achieve a
natural and efficient support of nonmonotonic constructs in recursive rules.

This extendded abstract is organized as follows. In the next section, we
present a short discussion of related work and then, in Section 3, we explore
the problem of supporting order and recursion on single stream queries for
both monotonic and non-monotonic constructs. Thus, in Section 4, we intro-
duce Streamlog, which is basically Datalog with modified well-formedness rules
for negation. These rules guarantee both simple declarative semantics and effi-
cient execution (Section 5). Because of possible skews between their timestamps,
multiple streams pose complex challenges at the logical and implementation lev-
els. We propose a solution for this problem in Section 6.

2 Continuous Queries in DSMS
Data streams can be modeled as append-only relations on which the DSMS sup-
ports continuous queries [2]. As soon as tuples arrive in the input stream, the
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Fig. 1. Continuous Query Graphs

DSMS is expected to decide, in real time or quasi real-time, which additional
results belong to the query answer and promptly append them to the output
stream. In this incremental computation model no output can be taken back;
therefore, the DSMS might have to delay producing a tuple until it is sure that
the tuple belongs to the final output—a certainty that for many queries is only
reached after the DSMS has seen the whole input. The queries showing this be-
havior, and operators causing it, are called blocking, and have been characterized
in [2] as follows: “A blocking query operator is one that is unable to produce
the first tuple of the output until it has seen the entire input.” Clearly, block-
ing query operators are incompatible with the computation model of DSMS and
should be disallowed, whereas all non-blocking queries should instead be allowed.

The main previous result on blocking queries is that non-monotonic query op-
erators are blocking, whereas monotonic operators are non-blocking [10, 9]. Given
that negation and traditional aggregates are non-monotonic, most current DSMS
simply disallow them in queries, although this exclusion causes major losses in
expressive power [11]. However, in this paper we present a more sophisticated
analysis suggesting that these losses are avoidable, since (i) the partial orderings
used in [10, 9] are not the same as the subset ordering used in databases and
Horn clauses, and (ii) previous research has made great strides in coping with
non-monotonicity via concepts such as stratification and stable models.

Queries on data streams are commonly visualized using workflow models
such as those in Figure 1, that show the pipelined execution used by the DSMS
for continuous queries. The boxes labelled Source at the left of our graph, de-
pict tuples coming from an external stream source or a database relation. For
instance in the first query, the source feeds incoming tuples to a buffer; then
query operator F1 takes the tuples from this buffer and feeds them to its output
buffer that supplies operator F2, and so on. As shown in Figure 1, some boxes
might consist of very simple operators, e.g., the relational algebra operators of
projection, selection and union. In general, however, the boxes can implement
much more complex functions, including pattern search operators or data min-
ing functions [15]written in procedural languages, or other languages. Here will
assume that those boxes consist of Streamlog rules.

A key assumption is that operators are order-preserving. Thus each operator
takes tuples from the front of its input queue and adds any tuple(s) it produces
to the tail of its output buffer. Thus, since the operators denoted by boxes in
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the query graph are defined by Streamlog rules, the semantics of our continuous
query is defined by the logic program consisting of (i) the goal defined by the
Sink node (ii) the rules in the boxes leading to such a goal, and (iii) the facts
streaming from the source nodes into the rules in our boxes. We assume that
our data streams are explicitly timestamped , since the first column of our tuples
is a timestamp that either (i) was created by the external device that created
the tuple (external timestamp) or (ii) it was added by the DSMS at the time it
received the tuple (internal timestamp). In either case, tuples are arranged and
processed by increasing values of their timestamps.

3 Single Stream Processing

Let us first consider the example of a single input stream of messages of the form
msg(Time, MsgCode) and say that we are looking for repeated occurrences of a
given message with code “red”. Then the following Datalog rule can be used to
describe multiple occurrences of the same alarm code “X”:

Example 1. Repeated occurrences of the same alarm.

repeated(T, X)← msg(T, X), msg(T0, X), T > T0.

Then the query ?repeated(T, red) could be used to signal the repeated occur-
rences of code “red,” which, e.g., might be used by an application to sound an
alarm. Thus, our alarm is triggered for all but the first occurrence of code red.

The semantics of query Q on a stream, such as msg, is defined by the cumu-
lative answer that Q has returned until time τ . This cumulative answer at time
τ must be equal to the answer computed upon the database containing all the
data stream tuples with timestamp ≤ τ . In a blocking query, this equality only
holds at the end of the input, whereas for a continuous non-blocking query it
must hold for every instant in time.

Massive data streams can easily exceed the system storage capacity. In DSMS,
this problem is addressed with windows or other synopses, which can be easily
expressedin Streamlog. But, unlike in some DSMS [1], windows do not play a
key role in the semantics of Streamlog.

The Importance of Order. Since query operators return sequences of tuples that
are fed into the next query operator, assuring the correct order of their output
sequences becomes critical. To illustrate this point, say that we modify Example
1, above, by keeping the body of the rule unchanged; but then we change the
head of the rule so that the timestamp of the former occurrence is used, rather
than the current one:

Example 2. Time-warped repetitions ?wrepeated(Time, X)

wrepeated(T0, X)← msg(T, X), msg(T0, X), T > T0.

We immediately realize that there is a problem, since repetitions normally ar-
rive in an order that is different from that of their previous occurrences. For
instance, we might have that a message with code α arrives at time tα, followed
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by a message with code β, which is then repeated immediately, while the first
repetition of α arrives 10 minutes later. Then, to produce tuples by increasing
timestamps, we will need to hold up the output for 10 minutes. In the worst case,
the delay required can be unbound, although punctuation marks and windows
can be used to alleviate the problem in many situations. Although the situation
of unbound wait has not been studied in the literature, it is clear that in many
cases it can be as bad as that of blocking queries. Therefore, rules such as that
of Example 2 must be disallowed, although they contain no negation or other
nonmonotonic operators.

3.1 Negated Goals
The addition of order-inducing constraints in the rules offers unexpected major
benefits when dealing with negated goals. Say that we want to detect the first
occurrence of “code red” warning. For that, we only need to make sure that once
we receive such a message there is no identical other message preceding it:

Example 3. First occurrence of code red: ?first(T, red).

first(T, X)← msg(T, X),¬previous(T, X).
previous(T, X)← msg(T0, X), T0 < T.

These queries only use negation on events that, according to their timestamps,
are past events. Thus the queries can be answered in the present: they are non-
blocking. Therefore, they should be allowed by a DSMS compiler, which must
therefore be able to set them apart from other queries with negation which are
instead blocking.

For instance, a blocking query is the following one that finds the last occur-
rence of code-red alert:

Example 4. Last occurrence of code red: ?last(T, red).

last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

This is obviously a blocking query, inasmuch as we do not have the information
needed to decide whether the current red-alert message is actually the final one,
while messages are still arriving. Only when the data stream ends, we can make
such an inference: to answer this query correctly, we will have wait till the input
stream has completed its arrival, and then we can use the standard CWA to
entail the negation that allows us to answer our query. But the standard CWA
assumption will not help us to conclude that the query in Example 3 is non-
blocking. We will instead exploit the timestamp ordering of the data streams to
define a Progressive Closing World Assumption (PCWA) that can be used for
that. In our definition, we will also include traditional database facts and rules,
since these might also be used by continuous queries. Thus, we consider a world
consisting of a regular database facts and one timestamped-ordered stream:

Progressive Closing World Assumption (PCWA): Once a fact stream(T, . . .) is
observed in the input stream, the PCWA allows us to add to our knowledge base
¬stream(T1, . . .), provided that T1 < T, and stream(T1, . . .) is not entailed by
our fact base augmented with the stream facts having timestamp ≤ T.
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Therefore, our PCWA for a single data stream revises the standard CWA
of deductive databases with the provision that the world is in fact expanding
according to its timestamps. For entailment, we can use notions of entailment
that were shown to preserve consistency in Datalog, including the least models
of Horn Clauses and the perfect models of (locally) stratified programs.

4 Streamlog

In Streamlog, base predicates, derived predicates and the query goal are all
timestamped in their first arguments. The same safety criteria used in Datalog
can be used in Streamlog. Furthermore, we assume that timestamp variables are
made safe by equality chains equating their values to the timestamps in the base
stream predicates1.

We can now propose obvious syntactic rules that will avoid blocking behavior
in the temporal rules of safe Streamlog programs.

Sequentially Structured Programs.

– Strictly Sequential: A rule is said to be Strictly sequential when the timestamp
of its head is > than every timestamp in the body of the rule. A predicate
is strictly sequential when all the rules defining it are strictly sequential.

– Sequential: A rule is said to be sequential when it satisfies the following three
conditions:
(i) the timestamp of its head is equal to the timestamp of some positve goal,
(ii) the timestamp of its head is > or ≥ than the timestamps of the remaining
goals, and
(iii) if the rule is recursive, then all negated goals that are recursive with the
head predicate are strictly sequential.

– A program is said to be sequentially structured when all its rules are sequen-
tial or strictly sequential.

The programs in Example 3 is sequentially structured while those in Example
2 and Example 4 are not. Thus we have here a simple and intuitive notion that
characterizes non-blocking continuous queries, including those that use negation.
Moreover sequentially structured programs are easy for a compiler to recognize,
and they are conducive to a very efficient implementation.

This is quite obvious for the program in Examples 3 since this is stratified
with respect to negation [17], but it is also true for the program in Exam-
ple 5 that is not. The program in Example 5 is locally stratified and thus has a
unique stable model called the perfect model [17]. Moreover, while recognizing
locally stratified programs is in general Π1

1-complete [6], sequentially structured
programs are ease to recognize and implement because of the pattern of their
temporal arguments that is akin to XY-stratification [17].

By their ability of pushing negation or aggregates into recursion, sequen-
tially structured Streamlog programs can implement algorithms that could not
be expressed or efficiently implemented in Datalog. This is demonstrated by

1 Expressions such as T2 = f(T1) or T2 = T1+1 cannot be used to deduce the safety
of T2. Only equality can be used for timestamp arguments.
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Example 5 that solves the well-known shortest path problem. The rules in this
example specify the operations discussed next. The last two rules take the arcs
with the current timestamp and assign them to path, provided that no shorter
path with the same endpoints was computed earlier. The actual recursive com-
putation of path is performed by the middle rule. This rule uses lgr(T1, T2, T) to
select the larger of its first two arguments, whereby T will always coincide with
the current timestamp as per differential fixpoint used in the implementation of
these rules [17]. The negated goal in this rule checks that no shorter path with
the same endpoints was computed earlier. The top two rules visit path atoms
with timestamp T so produced and only retain the shortest ones, for a given
start point and end point.

Example 5. Continuous shortest paths in graphs defined by stream of arcs.

minpath(T, X, Y, D)← path(T, X, Y, D),¬shorterpath(T, X, Y, D).
shorterpath(T, X, Z, D)← path(T, X, Z, D1), D1 ≤ D.

path(T, X, Z, D)← path(T1, X, Y, D1), path(T2, Y, Z, D2),
lgr(T1, T2, T), D = D1+D2,¬shorter(T, X, Z, D).

path(T, X, Y, D)← arc(T, X, Y, D),¬shorter(T, X, Y, D).
shorter(T, X, Y, D)← arc(T, , , ), path(T1, X, Y, D1), T1 < T, D1 ≤ D.

In this program, we have expressed the transitive closure using quadratic
rules, since this requires only the memorization of path values. In the linear
expression of transitive closure both arc and path would have required memo-
rization.

Therefore, sequentially structured programs support negation in recursion
by restricting recursive negated goals to previous timestamps. These programs
have the formal semantics and efficient implementation discussed next based on
their bistate version. The bistate version of a program is obtained by observing
that for each timestamp value in the head the rule contains (i) goals that have
the same timestmap value as the head, and (ii) goals having previous timestamp
values. Now, the head and the goals in (i) are renamed with the prefix “new”
and the goals in (ii) are renamed with the prefix“old”: by this renaming, every
sequentially structured program becomes a stratified program and thus amenable
to efficient computation:

Theorem 1. If P is a Sequentially Structured program then: (i) P is locally
stratified, and (ii) the unique stable model of P can be computed by repeating,
for each timestamp value, the iterated fixpoint computation of its bistate version.

5 Multiple Streams and Synchronization

A much studied DSMS problem is how to best guarantee that binary query oper-
ators, such as unions or joins, generate outputs sorted by increasing timestamp
values [3]. To derive a logic-based characterization of this problem, assume that
our msg stream is in fact built by combining the two message streams sensr1 and
sensr2. For stored data, this operation requires a simple disjunction as follows:
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Example 6. Disjunction expressing the union of two streams.

msg(T, S)← sensr1(T, S).
msg(T, S)← sensr2(T, S).

However, for data streams, even if sensr1 and sensr2 are ordered by their
timestamps, this disjunction says nothing about the fact that the output should
be ordered. Indeed, assuring such an order represents a serious challenge for
a DSMS, due to the time-skews that normally occur between different data
streams. Thus, for the union in Figure 1, when one of the two input buffers is
empty, we cannot take any tuple from the other buffer, until we know what its
timestamp value will be. At the logical level, the problem can be solved by the
introduction of predicate missingii that checks tuples in the other stream:

Example 7. Synchronized Union of Streams.

msg(T, S)← sensr1(T, S),¬missing2(T).
msg(T, S)← sensr2(T, S),¬missing1(T).

Here ¬missing2 (¬missing1)guarantees that all the sensr2 (sensr2) tuples
with timestamp < T have already been added to the output. Now all2 can be
expressed by double negation:

missing2(T)← sensr1(T, ), sensr2(T2, S2), T2 < T,¬msg(T2, S2).
missing1(T)← sensr2(T, ), sensr2(T1, S1), T1 < T,¬msg(T1, S1).

Thus, we have a sequentially structured program,

Example 8. Union by sort-merging unsynchronized data streams.

msg(T1, S1)← sensr1(T1, S1), sensr2(T2, ), T2 ≥ T1.
msg(T2, S2)← sensr2(T2, S2), sensr1(T1, ), T1 ≥ T2.

These rules are correct but not complete. In fact, in the first rule we have T2 ≥ T1

instead of, ¬missing2(T): now, the first clause implies the latter but not vice-
versa. Moreover, with no tuple in one of the two buffers these rules imply that
we have to enter an idle-waiting state that is akin to temporary blocking.

From the viewpoint of users, neither the solution in Example 7 nor that
in Example 8 are satisfactory. What users instead want is to write the simple
rules shown in Example 6 and let the system take care of time-skews. There-
fore in Streamlog, we will allow users to work under the Naive Synchronization
Assumption (NSA), whereby all1 and all2 are always satisfied (and likewise
when we have the union or join of multiple streams). Observe that this assump-
tion allows us to generalize the PCWA to multiple data streams and provides
Streamlog users with the benefits of logical simplicity and expressive power that
PCWA entails. However with NSA, the system is left with the responsibility of
(i) adding implicit synchronization conditions such as all1, all2 to the rules
involving multiple data streams, and (ii) supporting them very efficiently using
the backtracking techniques discussed in [3].
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6 Conclusion

This paper has brought logic-based foundations and superior expressive power
to DSMS languages which, currently, are dreadfully lacking both. By revising
the closed-world assumption for timestamped data streams, and introducing
the notion of sequentially structured programs, nonmonotonic constructs can
be naturally supported in recursive Streamlog programs. As a result, Streamlog
programs can achieve higher levels of expressive power and lower computation
complexity than stratified Datalog. Extensions of these results to data streams
without timestamps and the efficient implementation of Streamlog programs will
be discussed in future reports.
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