

Personalization in web search and data management

Timos Sellis, Research Center "Athena" and National Technical Univ. of Athens www.imis.athena-innovation.gr

(joint work with T. Dalamagas, G. Giannopoulos, G. Koutrika and A. Arvanitis)

Personalization – A general view

General methodology (1) How to personalize search results?

General methodology (2)

- O How to personalize search results?
 - **Step 1**. Implicit (from user log clicks) or explicit feedback can record **relevance judgments**, i.e. irrelevant, partially relevant, relevant results

General methodology (3)

- O How to personalize search results?
 - **Step 1**. Implicit (from user log clicks) or explicit feedback can record **relevance judgments**, i.e. irrelevant, partially relevant, relevant results
 - Step 2. Extract features from query-result pairs.

- 1. Text similarity between query-result,
- 2. rank of result in Google,
- 3. domain of the result url

General methodology (4)

- O How to personalize search results?
 - Step 1. Implicit (from user log clicks) or explicit feedback can record relevance judgments, i.e. irrelevant, partially relevant, relevant results
 - Step 2. Extract features from query-result pairs.
 - Step 3. Train a ranking function (i.e. Ranking SVM)
 using judgments and features.

General methodology (5)

- O How to personalize search results?
 - Step 1. Implicit (from user log clicks) or explicit feedback can record relevance judgments, i.e. irrelevant, partially relevant, relevant results
 - **Step 2**. Extract **features** from query-result pairs.
 - Step 3. Train a ranking function (i.e. Ranking SVM) using judgments and features.

Step 4. Re-rank the results using trained function

results

Personalization scenarios

- A lot of work on personalization techniques, however:
 - Main focus on algorithms, and models
 - Not on the items to be searched
 - Personalization is mainly user-centric or content-centric
 - What about query/behavior-centric approaches?
- Re-rank results of users' queries based on:
 - User search history (implicit feedback)
 - User profile (explicit feedback)
 - User/query search intent/behavior
- Examples:
 - In the past, when searching for "java" I clicked on programming related results and not on coffee related results
 - I have stated that I prefer news articles results or results from greek domain
 - My current need, searching for "java", is to read forum discussions and not tutorials

Motivating example

Motivating example I Need new cellphone, let's search: "new cellphones reviews" new query search intents User: 2 **Topic: Cellphones** Heer 1 Topic: Cars "mobile stock market" "new cellphones video" "racing cars videos" "htc s30 battery life" "formula 1 calendar" "opel astra forums" "samsung buy out" "samsung h55 review" User: 1 click on video results Topic: IR research User: 2 click on forum treads **Topic: Movies** "web search" "latest movies trailers" "box office" "search engines" click on e-shops "transformers actress"

"ranking"

Motivating example III

Motivating example III Need new cellphone, let's search: "new cellphones reviews" new query search intents User: 2 **Topic: Cellphones** User: 1 **Topic: Cars** "n obile stock market" "new cellphones video" 'racing cars videos" "htc s30 battery life" "formula 1 calendar" "samsung buy out" "opel astra forums" "samsung h55 review" User: 1 click on video results Topic: IR research User: 2 click on forum treads **Topic: Movies** "web search" "latest movies trailers" "box office" "search engines" click on e-shops

"ranking"

"transformers actress"

Collaborative training (Solution)

- Train multiple ranking functions
- Each ranking function corresponds:
 - Not to a single user
 - Not to a group of users
 - Not to a topic area
 - But to a search behavior:
 - Group of search results with similar characteristics w.r.t. the specific queries posed, i.e. similar feature vectors, collected from all users
- When re-ranking search results:
 - Check which search behaviors match with each new query
 - Re-rank the query's results according to the ranking functions trained for those search behaviors

Collaborative training (Search Behavior Capturing)

- Analyze search results into feature vectors
 - Represent each query result in the feature space
 - Mark each result's ranking class (relevance judgment)

Feature space:

- Textual similarity between query-result
- Rank of result in Google
- Domain of the result url
- Frequent words/urls in the result
- Existence of video, images, etc, in the result
- Category of result site (social, media, market...)
- Result popularity

Collaborative training (Search Behavior Capturing)

- Take into account the geometric characteristics of the baseline ranking model (Ranking SVM)
- Define search behavior in terms of those geometric characteristics
 - Feature vectors correspond to specific user search behaviors
- Cluster feature vectors to find groups of queries that correspond to similar search behaviors

Collaborative training (Training and re-ranking)

- Train one ranking function (ranking model) per search behavior cluster
- o For each new query:
 - Calculate its textual similarity with each search behavior cluster
 - Re-rank its results using the ranking models trained on the most similar clusters to the query

Evaluation

o Dataset:

- Yahoo! query log
- 76037 queries
 - More that 5 results
- 453 distinct users
 - More than 100 queries
- Training set
 - 30053 queries (40%)
- Test set
 - 45984 queries (60%)
- Clicks -> Relevance judgments
 - 3.2 relevance judgments per query

Evaluation

- Comparison of our method (Intent) with baselines:
 - Naïve: training one ranking function for all data (single)
 - Ideal: training one ranking function per user (user)
 - Competitive: training multiple ranking functions based on content
 - Terms (words) as clustering dimensions (content-1)
 - Standard IR features as clustering dimensions (content-2)
- Results
 - Mean Average Precision:

Method	MAP	Increase
Single	0.709	-
User	0.806	13.7%
Content-1	0.748	5.5%
Content-2	0.734	3.5%
Intent	0.754	6.3%

Extensions (1)

- Collaborative training
 - More sophisticated clustering process
 - Enhance cluster-query matching process
 - Combine content-based and search behavior based and user based approaches methods
 - More exteensive experiments
- Apply collaborative training on semantic web data
 - Training, re-ranking, personalization on:
 - RDF
 - Linked data
 - Introduction of structured data-specific:
 - Feature construction
 - Relevance judgments expansion methods

Extensions (2)

- Open issues on search for specific scientific areas
 - How can personalization techniques be adapted when:
 - The searched entities <u>frequently change names</u>
 - There are several categories of searched entities (e.g., biological publications, biological entities)

Personalization – DB View

Motivation – Information Overload

- searching for a used car
 - price < \$5000 AND model_year > 2007 AND mileage < 50000km

NO RESULTS!

- adjust query constraints
- iterate until finding satisfying results

frustrating process!

- Preferences
 - Alice likes 'Toyota' cars
 - Bob would prefer transmission = 'automatic'
- not a strict requirement, wishes
- o if not present in the query both users would get the same results!

Solutions

- use preferences to
 - relax an empty query
 - o return cars with mileage < 70000 as well
 - filter available choices
 - o transmission = 'automatic'
 - rank results
 - Toyota cars should appear first
- However, no standard solution to manipulate preferences in a db or integrate them in SQL queries

Previous approaches

- Broadly classified into:
 - Plug-in methods
 - filter query results
 - 2. evaluate preferences on qualified results
 - top-k, skylines
 - Native methods
 - special operators inside the database core
 - RankSQL, winnow operator
 - FlexPref
 - easier definition of preference strategies by implementing a set of interface functions

Limitations of previous approaches

- Plug-in methods
 - Performance and scalability
 - database used as 'black-box'
 - o only coarse-grained optimizations possible
 - Flexibility
 - how to use preferences to filter, rank etc.
 is hard-wired in application logic

Limitations of previous approaches

- Native methods
 - only applicable to specific query types
 - RankSQL -> top-k, winnow -> skylines
 - FlexPref -> only pref. strategies that can be defined based on the specified API
 - filtering logic cannot be extended to other preference/query types, such as:
 - conditional preferences
 - at least m preferences must be satisfied
 - keep the maximum pref. score for each tuple
 - they require modifications of the database source code

PrefDB: A different approach (ICDE' 12)

- addressing preferences as first-class citizens
 - preference model over relational data
- extend relational data model and algebra with preference processing
- revisit the traditional query paradigm
 - preferences do not disqualify results
 - different query types supported
 - o top-k scores, most preferences satisfied...

Models

- Preference model
 - conditional part, which tuples are affected
 - scoring part, how tuples are scored
 - confidence part, indicates preference credibility, importance or relevance
- Extended relational data model
 - p-relations
 - additional score and confidence attributes
 - values assigned after evaluating preferences on database tuples or by joining/aggregating scored tuples

Prefer operator

- o $\lambda_p(R)$ evaluates a preference p on R
 - for all tuples satisfying the preference selection condition, λ applies the ranking function

m_id	rating	year	director
m_1	7.8	1996	Allen
m_2	8.3	2004	Eastwood
m_3	8.5	2000	Allen
m_4	6.4	2010	Stone
m_5	7.8	1992	Eastwood

(a) R

o
$$p_a[R] = (\sigma_{vear>2000}, 0.1, 1)$$

m_id	score	conf
m_1		0
m_2	0.83	1
m_3	Т	0
m_4	0.64	1
m_5	Т	0

(b) R after evaluating preference p_a

o
$$p_b[R] = (\sigma_{director=`Eastwood'}, 0.8, 1)$$

m_id	score	conf
m_1		0
m_2	0.815	2
m_3		0
m_4	0.64	1
m_5	0.8	1

(d) R after evaluating $p_a \vee p_b$

Preferential Queries

- Consider a video-on-demand service application
 - Alice is searching for a recent movie
 - p₁: She loves comedies
 - p₂: She trusts user ratings
 - p₃: She is a fan of 'Ben Stiller'

• Q:
$$\Pi_{title,rating,ge}$$
 { $\sigma_{year} = 2010$ (MOVIES) λ_{p1} (GENRES) λ_{p2} (RATINGS) CAST λ_{p3} (ACTORS)}

Prototype System

Overview

- hybrid architecture:
 - tighter coupled to the DBMS
 - operator-level query optimizations
 - easily deployable to any standard RDBMS-no source code modifications
- users input queries and preferences declaratively
- queries are transparently executed by the system

Query Optimization and Processing

heuristics & cost-based optimizations

- blended processing strategies:
 - minimize intermediate materializations
 - defer operator execution wherever possible

- graphical tool for DBAs and application designers:
 - build and execute different types of preferential queries
 - experiment with different processing strategies (both plug-in or blended ones)
 - inspect query execution, preferenceaware query plans, statistics, profiling info

Epilogue

- Personalization is a key issue in information systems of various kinds
- Can be crucial in user satisfaction especially on Web, Database and Cloud environments
- We definitely need more work on models, processing techniques, efficient algorithms, and optimization techniques in order to seamlessly integrate personalization in existing paradigms

References

- Giorgos Giannopoulos, Theodore Dalamagas and Timos Sellis, Collaborative Ranking Function Training for Web Search Personalization, PersDB'09.
- Giorgos Giannopoulos, Theodore Dalamagas and Timos Sellis, Search Behavior-Driven
 Training of Multiple Ranking Models to Enhance Result Re-ranking, TPDL' 11.
- Giorgos Giannopoulos, Ulf Brefeld, Theodore Dalamagas and Timos Sellis, Ranking Models for User Intent, CIKM'11.
- A. Arvanitis, G. Koutrika, Towards Preferenceaware Relational Databases (ICDE' 12)
- A. Arvanitis, G. Koutrika, PrefDB: Bringing Preferences closer to the DBMS (SIGMOD' 12)