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DIMET, Università “Mediterranea” di Reggio Calabria, Via Graziella, Località Feo
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Abstract. In Social Internetworking analysis, bridge users play a key
role when information crossing among different Online Social Networks
(OSNs) is investigated. Unfortunately, not always users make explicit
that they are bridges by specifying the so-called me edges (i.e., those
edges connecting the accounts of the same user in distinct OSNs). Thus,
discovering hidden me edges is an important problem to face in this con-
text. In this paper we propose an effective approach giving good results
in real life settings. Indeed, an experimental campaign shows that our
approach returns precise and complete results.

Keywords: Online Social Networks, Social Internetworking Scenario, Link Min-
ing, Bridge Users, me edges.

1 Introduction

In the last years Online Social Networks (OSNs, for short) have been showing
an enormous development and have become one of the main actors of the Web
2.0. Many researchers from disparate fields started to investigate them [19]. In
particular, many approaches which collect large amounts of data from an OSN
and apply techniques of classical Social Network Analysis on them have been
proposed [11]. They obtain numerous and extremely interesting results. Many of
these approaches model an OSN as a graph since they are based on the intuition
that there is a strong correspondence between the user behavior in an OSN
and the structural properties of the corresponding graph. However, the current
research on OSNs should consider that nowadays users tend to spread their
activities among more OSNs and, often, to show a different behavior in different
OSNs. Think, for instance, of a user who joins Facebook to communicate with her
friends and LinkedIn to find a job. Therefore, different OSNs are interconnected
with each other and form a global graph. This complex structure represents the
substrate of the so called Social Internetworking Scenario (SIS, for short). In
this scenario a user can join multiple OSNs, two users can interact with each
other even though they joined two different OSNs and did not know each other:
it is sufficient that their communication passes through a bridge user, i.e. a
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16 F. Buccafurri et. al.

user who created an account in both the OSNs. As a consequence, bridge users
represent a key aspect of a SIS. The links connecting the different accounts of
the same bridge user in different OSNs are called me edges and, clearly, play a
key role in a SIS. Several users explicitly specify their different accounts in the
different OSNs they joined, and, consequently, their me edges. In the last years
this activity is also facilitated by some support tools. However, many users, due
to disparate reasons, do not perform this specification, and yet the knowledge of
these edges could be extremely useful not only to allow users of different OSNs
to communicate with each other but also to better construct the complete profile
of a user. This last feature could be significant in various application fields. For
instance, in e-commerce it could help to better identify users needs and desires
and to perform personalized offers; in e-recruitment it could help to better know
the complete profile of a candidate taking into account not only the information
officially declared by her in her curriculum vitae but also the one she informally
expressed in the OSNs she joined.

In this paper, we aim at providing a contribution in this setting. In particular,
we propose an approach to discovering hidden me edges in a SIS. Given two
nodes representing two accounts of two different OSNs, such that an explicitly
declared me edge between them does not exist, in order to discover it (if any),
our approach examines both the similarity of the accounts corresponding to the
two nodes and the node neighbors. In order to motivate the above choice it
is important to clarify that the purpose of our approach does not concern the
case in which a user voluntarily keeps separated two accounts in their respective
OSNs. In this case the user chooses account names very different from each
other and does not have common friends and, very probably, one of the two
profiles is fake (i.e., it does not contain real information about the user). This
situation, which is closer to identity-management and security problems, is little
relevant for our context, where we are interested in completing the real profile
of users. For these users we may expect (and this is just what we found for me-
connected users) that a user belonging to two (or more) OSNs tend to have at
least partially overlapping sets of friends in the different OSNs. Therefore, the
neighbors are useful information to exploit in order to detect hidden me edges.
In the literature, several string similarity functions have been proposed (e.g.,
Jaro-Winkler, Levenshtein, QGrams, Monge-Elkan, Soundex, etc. [14]). One of
them could be adopted to measure account similarity in our approach. In order
to verify which is the best one (i.e., the one leading our approach to obtain the
best performances) we carried out an experimental analysis; this is described
in detail in Section 4.1. In order to determine the neighborhood of a node we
exploit the information about the corresponding user, declared by means of
XFN (XHTML Friends Network) [2] and FOAF (Friend-Of-A-Friend) [1], two
standards specifically conceived for encoding human relationships. It is worth
pointing out that the technicalities concerning these two standards have not to
be manually handled by the user. As a matter of fact, each OSN has suitable
mechanisms to automatically manage them in a way transparent to her, who has
just to specify her relationships in a friendly fashion. Since, in a SIS, the number
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of node pairs to consider for the possible presence of a me edge is enormous, we
have identified a mechanism leading our approach to consider only a reasonable
number of very promising pairs. More specifically, from the examination of the
explicitly declared me edges, we have found that with a high probability some
of the nodes belonging to the neighbors of two nodes linked by a me edge are,
in their turn, linked by a me edge. As a consequence, our approach starts from
a set of already known me edges and examines only the neighbors of the nodes
involved in these edges. The plan of this paper is as follows: in the next section we
examine related literature. In Section 3 we provide a detailed description of the
proposed approach. In Section 4 we illustrate the experiments we have carried
out to verify its performance. Finally, in Section 5 we draw our conclusions.

2 Related Work

Our approach can be related to link prediction (or, equivalently, to missing link
detection), since we may image that a user who is detected as belonging to two
OSNs even though she did not declared the me edge, eventually will insert this
edge. Link prediction is a task of link mining aiming at predicting the (even
future) existence of a link between two objects [22,4]. In the contest of Social
Networks, it focuses on predicting friendships among users. Often, OSNs are
represented as graphs [8]; as a consequence, some link prediction approaches are
totally based on the structural properties of the graph representing the OSN
[21]. A first possibility to perform this task consists in analyzing common neigh-
bors. For instance, the authors of [25] have found a correlation between the
number of common neighbors of two nodes of a collaboration network and the
probability that these last ones will collaborate in the future. In order to de-
cide whether two nodes are related, [3] exploits a similarity measure derived
from the Jaccard coefficient. Based on preferential attachment [26], [6] verifies
experimentally that the probability of a relationship between two nodes is pro-
portional to the product of the number of their neighbors. Some approaches to
link prediction rely on the notion of shortest-path distance which is computed
by means of several similarity measures, like the Katz coefficient [18], PageRank
[7] and SimRank [16]. Due to the high computational cost of these measures,
some approximations have to be adopted in order to make them effective. In
any case, whenever the number of nodes is considerable, the application of these
methods may result in a too long running time. In conjunction with all the above
techniques, some strategies may be used to enhance the accuracy of predictions.
For instance, low-rank approximation [23] receives the adjacency matrix of the
graph associated with a Social Network and reduces the noise inside it, yet pre-
serving its structural properties. Also the use of unseen bigrams [13] can help
in the link detection task. Here, the similarity between a node A and a node
B is computed by taking into account the similarity between the nodes B and
C, where this last one is the node most similar to A. Furthermore, the quality
of link detection can be improved by means of clustering techniques aiming at
identifying the graph components which introduce noise in the similarity com-
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18 F. Buccafurri et. al.

putation [15,21]. [27] proposes the application of statistical relational learning to
link prediction in the domain of scientific literature citations. In this approach
statistical modeling and feature selection are integrated into a search mechanism
over the space of database queries in such a way as to define feature candidates
involving complex interactions among objects in a given relational database. [28]
analyzes the localization in space and time of a large number of users by means
of their call detail records. Its analysis shows that users with similar movement
routines are strongly connected in an OSN and have intense direct interactions.
This result allows implicit ties in the OSN to be predicted with a significant
accuracy starting from the analysis of the correlation between user movements
(i.e., their mobile homophily). Other approaches to link detection come from the
fields of deduplication and disambiguation. In particular, [5] proposes an algo-
rithm for discovering duplicates in the dimensional tables of a Data Warehouse.
As far as disambiguation is concerned, the similarity between entities has been
exploited in [17] to distinguish references in a relationship-based data cleaning
system. This approach models a database as a graph of entities linked to each
other by relationships and exploits both node features and relationships to carry
out the disambiguation task. From the above analysis it emerges that our ap-
proach, among the above literature, can be related only with common-neighbors
approaches. However, despite the apparent closeness to them, we can easily re-
alize that they are not directly applicable to our context. Indeed, the notion of
common-neighbors relies, in general, on the notion of common identity of friends
of a user. But discovering the common identity of users (in different OSNs) is
for us the output of the problem, leading to a sort of recursive definition of the
problem itself. We have confirmed experimentally the above claim by showing
that the application of the state-of-the-art common-neighbors approaches to our
problem returns very unsatisfying results. For space reasons, we do not include
these experiments in this paper, but the reader can find them in [9].

3 Description of the proposed approach

In this section we illustrate in detail our approach for discovering hidden me edges
in a SIS. It consists of three functions that will be examined in the following.

Function findMeEdges. It receives a set startmeSet of existing me edges and
returns a set newmeSet of discovered me edges. For each edge e of startmeSet,
our approach considers the involved nodes na and nb. Then, it computes their
neighborhoods neigha and neighb. In our approach the neighborhood of a node
consists of those nodes linked to it by a contact or a friend relationship in
XFN or FOAF. After this, our approach considers all the possible pairs (n′

a, n
′
b)

such that n′
a ∈ neigha and n′

b ∈ neighb. For each of these pairs it first com-
putes the similarity between the account names of n′

a and n′
b by calling a func-

tion accountSim(n′
a, n

′
b). As pointed out in the Introduction, there exist sev-

eral already defined functions for computing the similarity between two strings,
each characterized by specific features (e.g., Jaro-Winkler, Levenshtein, QGrams,
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Monge-Elkan, Soundex, etc. [14]); accountSim(n′
a, n

′
b) can exploit one of these

functions on the basis of the desired severity level; for instance, QGrams is very
severe and assigns quite low similarity degrees; Jaro-Winkler is more permissive
whereas Soundex is very permissive. In Section 4.1 we shall discuss about the
exploitation of these functions in our approach. If the similarity values detected
by accountSim(n′

a, n
′
b) is higher than a certain threshold thcand and there does

not already exist an explicitly declared me edge between n′
a and n′

b, our approach
verifies if a hidden me edge exists between these two nodes. For this purpose it
applies a function sim (which we shall explain in detail below) on n′

a and n′
b.

If the result of this function is higher than a certain threshold threal, our ap-
proach assumes that a hidden me edge exists between n′

a and n′
b and inserts it in

newmeSet. In the opposite case, our approach assumes that no me edge exists
between n′

a and n′
b. The algorithm implementing our approach is described in

Algorithm 1.
As for the computational complexity of this algorithm, it is possible to state

the following theorem:

Theorem 1. Given a pair of nodes na and nb, the computational complexity
for inferring a hidden me edge between them is O(d2), where d = max(|neigha|,
|neighb|), being neigha and neighb the neighborhoods of na and nb, resp. 2

Function sim. This function receives: (i) a positive integer k; (ii) a list simList of
triplets 〈nodea, nodeb, simab〉 each representing a pair of nodes along with their
“basic” similarity value; this last one coincides with accountSim(nodea, nodeb)
when k = 1; when k > 1 it is obtained by suitably weighting accountSim(nodea,
nodeb) on the basis of the degrees of nodea and nodeb (see, below, Algorithm 2);
(iii) a real number pSimab representing the similarity value of n′

a and n′
b at step

k − 1. It returns the similarity simab between n′
a and n′

b at step k. It behaves
as follows: if k = 1 then simab coincides with pSimab. Otherwise, sim computes
the average value avgSim of the similarities of the node pairs of simList and,
then, computes simab as a weighted mean of pSimab and avgSim. The weight
w assigned to avgSim is set to 1

kk in such a way that it quickly decreases when
k increases. This implies that the nodes belonging to the closest neighbors of
n′
a and n′

b provide a much higher contribution than the ones belonging to the
farthest neighbors of n′

a and n′
b. If the absolute value of the difference between

simab and pSimab is less than a certain threshold ǫ then sim terminates and
returns simab. Otherwise, for each triplet 〈nodea, nodeb, simab〉 in simList, it in-
serts in a list nextSimList the triplets 〈node′a, node′b, sim′

ab〉 such that: (i) node′a
belongs to the neighborhood of nodea; (ii) node′b belongs to the neighborhood

of nodeb; (iii) sim′
ab represents the basic similarity of node′a and node′b. For each

triplet 〈nodea, nodeb, simab〉 the corresponding triplets 〈node′a, node′b, sim′
ab〉 in-

serted in nextSimList are chosen among those ones having the highest values
of sim′

ab. This task is performed by the function functionMaxs which will be
explained in detail below. After nextSimList has been constructed, sim invokes
recursively itself by passing k + 1, nextSimList and simab. The algorithm im-
plementing sim is described in Algorithm 2.
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Algorithm 1 findMeEdges
Require: We denote by accountSim(nodea, nodeb) a function returning the similarity value be-

tween the account names of nodea and nodeb, by existMe(nodea, nodeb) a boolean func-
tion returning true if a me edge between nodea and nodeb exists and false otherwise, and by
sim(step, simList, pSimab) a function computing the similarity between nodea and nodeb on
the basis of the similarity of the corresponding neighbors.

Input startmeSet: a set of existing me edges
Output newmeSet: a set of discovered me edges
Constant thcand {A threshold for candidate me edges}
Constant threal {A threshold for real discovered me edges}
Variable e: an edge
Variable na, nb, n

′
a, n

′
b: a node

Variable simab : a support variable
Variable neigha, neighb : a list of nodes
Variable simList: a list of triplets of the form 〈nodea, nodeb, simab〉
1: simList := ∅; newmeSet := ∅; neigha := ∅; neighb := ∅
2: for i := 1 to |startmeSet| do
3: extract an edge e from startmeSet
4: get the nodes na and nb of e
5: insert the neighbors of na in neigha

6: insert the neighbors of nb in neighb

7: for each node n′
a in neigha do

8: for each node n′
b in neighb do

9: simab:=accountSim(n′
a, n

′
b)

10: if (simab> thcand) and !existMe(n′
a, n

′
b) then

11: insert into simList the triplet 〈n′
a, n

′
b, simab〉

12: if (sim(1, simList, simab) > threal) then
13: insert the me edge between n′

a and n′
b in newmeSet

14: end if
15: simList := ∅
16: end if
17: end for
18: end for
19: end for
20: return newmeSet

Observe row 3 of Algorithm 2; cur max num, which represents the real num-
ber of node pairs to consider at step k of the computation of simab, is obtained
by multiplying max num (which represents the maximum number of node pairs
to consider in the computation of simab) by w. Due to the definition of w, this
implies that cur max num quickly decreases when k increases; therefore, when
k increases, the number of pairs which can contribute to simab highly decreases.

Function findMaxs. The function findMaxs receives two nodes nodea and nodeb
and a positive integer cur max num. It returns a list simList′ of cur max num
triplets 〈node′a, node′b, sim′

ab〉. It behaves as follows: first it constructs the neigh-
borhoods neigha of nodea and neighb of nodeb. After this, for each pair 〈node′a,
node′b〉 such that node′a ∈ neigha and node′b ∈ neighb, it computes the corre-
sponding similarity scaledSimab. This last one considers the similarity account-
Sim(node′a, node

′
b) (see Algorithm 1), as well as the degrees of nodea, node

′
a,

nodeb and node′b. This choice aims at avoiding that node′a and node′b are power
users and nodea and nodeb are not; in this case, it could happen that node′a
(resp., node′b) belongs to neigha (resp., neighb) only because it corresponds to a
very famous person (think, for instance, to the case node′a and node′b represent
‘Barack Obama’); in this case the presence of this node in neigha and neighb
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Algorithm 2 sim
Require: We denote by max(x, y) a function returning the maximum value between x

and y, by findMaxs(nodea, nodeb, cur max num) a function returning a list of triplets

〈node′a, node′b, simab
′〉 such that 〈node′a, node′b〉 is one of the cur max num pairs of nodes

having the highest similarity value simab
′
among all the possibile pairs of nodes obtained by

taking a node of the neighborhood of nodea and a node of the neighborhood of nodeb.
Input k: the current step
Input simList: a list of triplets 〈nodea, nodeb, simab〉 each representing a pair of nodes along

with their basic similarity value
Input pSimab: the similarity value of n′

a and n′
b at step k − 1

Output simab: the similarity value of n′
a and n′

b at step k
Constant max num {The maximum number of node pairs to consider in the computation of

simab}
Constant ε {A parameter determining the algorithm termination}
Variable w: a weight in the real interval [0,1]
Variable cur max num: the current number of node pairs having the highest similarity values to

consider
Variable avgSim: a real variable
Variable nextSimList: a new list of triplets 〈nodea, nodeb, simab〉 whose structure is analogous

to the one of simList
1: nextSimList := ∅;
2: w := 1

kk

3: cur max num := max(⌈max num · w⌉, 1)
4: if (k=1) then
5: simab := pSimab

6: else
7: assign to avgSim the average value of the similarities of the node pairs of simList
8: simab := (1 − w) · pSimab + w · avgSim
9: end if
10: if (|simab − pSimab| ≥ ε) then

11: for each 〈nodea, nodeb, simab〉 in simList do
12: insert the list returned by findMaxs(nodea, nodeb, cur max num) in nextSimList
13: end for
14: return sim(k + 1, nextSimList, simab)
15: else
16: return simab

17: end if

is not significant in defining the real life relationships of nodea and nodeb. More
specifically, scaledSimab is computed as:

scaledSimab := min
(

max(D(node′a),D(nodea))
max(D(node′a),D(nodea))+|D(node′a)−D(nodea)| ,

max(D(node′b),D(nodeb))
max(D(node′

b
),D(nodeb))+|D(node′

b
)−D(nodeb)|

)
· accountSim(node′a, node

′
b)

Here, D(nodex) returns the degree of nodex. findMaxs inserts in simList′

the cur max num triplets 〈node′a, node′b, scaledSimab〉 having the highest val-
ues of scaledSimab. Finally, it returns simList′. The algorithm implementing
findMaxs is described in Algorithm 3.

4 Experiments

In this section we present our experimental campaign conceived to determine
the performances of our approach. Since this last one operates on a SIS and not
on an OSN, we had to extract not only the connections among the accounts of
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22 F. Buccafurri et. al.

Algorithm 3 findMaxs
Require: We denote by accountSim(nodea, nodeb) a function returning the similarity value be-

tween the account names of nodea and nodeb, by max(x, y) the function returning the maximum
value between x and y, by min(x, y) the function returning the minimum value between x and
y and by D(nodex) the function returning the degree of nodex.

Input nodea, nodeb: a node
Input cur max num: the number of node pairs to return

Output simList′ : a list of cur max num triplets of the form 〈node′a, node′b, sim′
ab〉

Variable nodea, nodeb, node
′
a, node

′
b: a node

Variable neigha, neighb : a list of nodes

Variable t′ab: a triplet of the form 〈node′a, node′b, sim′
ab〉

Variable cont, scaledSimab: an integer variable
Variable dfa, dfb: a real variable
1: simList′ = ∅; neigha = ∅; neighb = ∅
2: insert the neighbors of nodea in neigha

3: insert the neighbors of nodeb in neighb

4: cont := 0
5: for each node′a in neigha do
6: for each node′b in neighb do

7: dfa :=
max(D(node′a),D(nodea))

max(D(node′a),D(nodea))+|D(node′a)−D(nodea)|

8: dfb :=
max(D(node′b),D(nodeb))

max(D(node′
b
),D(nodeb))+|D(node′

b
)−D(nodeb)|

9: scaledSimab := min(dfa, dfb) ∗ accountSim(node′a, node
′
b)

10: if (cont < cur max num) then
11: insert in simList′ the triplet 〈node′a, node′b, scaledSimab〉
12: sort simList′ in a descending order
13: cont+ +
14: else
15: t′ab := simList′.get(cur max num − 1)

16: if (scaledSimab > t′ab.sim
′
ab)) then

17: replace the triplet in the position (cur max num − 1) of simList′ with the triplet
〈node′a, node′b, scaledSimab〉

18: sort simList′ in a descending order
19: end if
20: end if
21: end for
22: end for
23: return simList′

different users in the same OSN but also the connections among the accounts of
the same user in different OSNs.

In order to represent these connections, two standards encoding human re-
lationships are generally exploited. The former is XFN (XHTML Friends Net-
work) [2]. It simply uses an attribute, called rel, to specify the kind of rela-
tionship between two users. Some possible values of rel are friend, contact,
co-worker, parent, and so on. A (presumably) more complex alternative to
XFN is FOAF (Friend-Of-A-Friend) [1]. In our experiments, we considered a
SIS consisting of four OSNs, namely Twitter, LiveJournal, YouTube and Flickr.
We chose these four OSNs because they were largely analyzed in the past in
Social Network Analysis papers devoted to study a single OSN or to com-
pare different OSNs [20,24,12,29]. For our experiments, we exploited a server
equipped with a 2 Quad-Core E5440 processor and 16 GB of RAM with the
CentOS 6.0 Server operating system. We performed our experiments from Jan-
uary 30, 2012 to March 08, 2012. Exploited data can be found at the URL
address http://www.ursino.unirc.it/sebd-12.html.
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Discovering Hidden me Edges in a Social Internetworking Scenario 23

4.1 Unsupervised method validation

A first experiment aimed at determining the performance of our approach as
well as at choosing the best function for computing the account name similarity
in our context. For this purpose we performed a pre-processing task consisting
of two steps. Specifically, during the first step we constructed a set meSet of 100
node pairs such that a me edge existed between them; this was trivial since it
was sufficient to find me edges declared in XFN and FOAF. During the second
step we detected a set notmeSet of 100 node pairs such that a me edge did
not exist between them; for this purpose, we detected a me edge (na, nb) and
we obtained an element of notmeSet by taking the pair (nc, nb) such that there
existed a contact or a friend edge between na and nc. Then, we applied our
approach on the pairs of meSet and notmeSet and we obtained a set meSet′

(resp., meSet′′) of pairs of meSet (resp., notmeSet) for which it detected a me

edge, as well as a set notmeSet′ of meSet of pairs for which it did not detect a me
edge. It is worth pointing out that in this experiment we modified the input and
the output of our approach in such a way that it simply receives two nodes and
returns true if it detects a me edge between them, false otherwise. To compute
the performance of our approach we adopted two classical measures, namely
Precision and Recall. In the literature Precision is an indicator of correctness,
whereas Recall is an indicator of completeness. In our case they were defined as

follows: Precision = |meSet′|
|meSet′|+|meSet′′| ; Recall = |meSet′|

|meSet′|+|notmeSet′| .
In this formulas we assigned the same importance to the approach’s capabil-

ities of detecting me and not me edges. Actually, the behavior of our approach
(and, consequently, the values of Precision and Recall) depends on the function
adopted for computing the account name similarity. As a consequence, we con-
sidered the most common of these functions and, for each of them, we computed
the Precision and the Recall of our approach. In this way we were able to de-
termine the function maximizing these measures. Obtained results are shown in
Table 1.

Function Precision Recall

Jaro-Winkler 0.558 0.920

QGrams 0.908 0.690

Levenshtein 0.877 0.710

Smith-Waterman 0.840 0.790

Smith-Waterman-Gotoh 0.779 0.810

Monge-Elkan 0.779 0.810

Needleman-Wunch 0.500 1.000

Jaro 0.555 0.910

Soundex 0.500 0.990

Table 1. Precision and Recall of our approach for each account name similarity func-
tion

From the analysis of this table we can observe that, in our application sce-
nario, many functions are well suited for measuring account name similarity.
Indeed, 5 functions led our approach to obtain a Precision higher than 0.77 and
6 functions led it to obtain a Recall higher than 0.81. These results show also
that our approach presents a very satisfying performance both in correctness
and in completeness. Finally, among the considered functions, QGrams (resp.,
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Needleman-Wunch) proved to be the one capable of assuring the best Precision
(resp., Recall). As for the computation of string similarities, our approach needed
an average time of 10−5s to process two nodes. The number of iterations ranged
between 2 and 3; as a matter of fact, at the fourth iteration the value of w was
1/256, which makes the contribution of the fourth iteration negligible.

4.2 Supervised method validation

This experiment aimed at computing the correctness of our approach in a way
different from the one considered in the previous experiment; in particular, in this
case, we wanted to benefit from the support of a human expert. In this case we
first applied a crawling technique to derive a sample of the SIS. This sample was
necessary to have a starting set of me edges at disposal. In order to maximize the
number of me edges present in the sample we applied BDS, a crawling technique
specifically conceived to operate on a SIS instead of on a single OSN, which is
highly capable of finding me edges [10]. Our sample consisted of 93169 nodes and
146325 edges, 745 of which were me ones. We randomly selected 160 me edges
and put them in a set startmeSet. We gave this set in input to our approach.
The adopted account name similarity function was QGrams because it proved
to assure the best Precision. Our approach returned a set finalmeSet of 22 me

edges and a set fullnotmeSet of 133 not me edges. From this last set we randomly
selected a set finalnotmeSet of 22 not me edges in such a way that me edges and
not me edges had the same weight in the computation. After this, we required
the human expert to manually verify if the elements of finalmeSet represented
real me edges and the elements of finalnotmeSet represented real not me edges.
For this purpose, she really visited the pages corresponding to the nodes of each
edge. For each edge her possible answers were true, false and unknown. She gave
this last answer when she was not able to access the page associated with a node
or to give an answer with an absolute certainty. At the end of the experiment
we obtained that, as for finalmeSet, she returned t′ = 16 true, f ′ = 4 false and
u′ = 2 unknown. As for finalnotmeSet, she returned t′′ = 18 true, f ′′ = 2 false
and u′′ = 2 unknown. After this, we computed the correctness of our approach
by exploiting a metric well known in the literature, i.e. accuracy. It is defined
as:

accuracy = t′+f ′

t′+f ′+t′′+f ′′ ·
(

t′

t′+f ′

)
+ t′′+f ′′

t′+f ′+t′′+f ′′ ·
(

t′′

t′′+f ′′

)
= t′+t′′

t′+f ′+t′′+f ′′ = 0.85

At the end of this experiment we can conclude that our approach really shows
a very satisfying value of correctness in both an unsupervised and a supervised
validation.

5 Conclusions

In this paper we have proposed an approach for discovering hidden me edges in
a Social Internetworking Scenario. First, we have seen the motivations under-
lying our approach and its possible benefits. Then, we have examined related
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literature. Afterwards, we have provided a detailed (both informal and formal)
description of it. Finally, we have illustrated an experimental campaign devoted
to determine its performances. SIS analysis is a very young research field and
we plan to perform further research efforts in this context in the future. A first
effort will be the development of some optimization functionalities to reduce the
number of string matching operations required for each pair of accounts. A pos-
sible development could regard the definition of an approach that exploits both
explicitly declared and discovered me edges to construct a very rich user profile
expressing her needs, desires and behavior. This idea can be further developed in
such a way as to find malicious users who create multiple accounts for frauds and
other misbehaving activities and clearly do not explicitly declare the correspond-
ing me edges. Our approach first could discover hidden me edges and then could
determine that the behavior of the corresponding nodes is malicious. Finally, it
could be possible to develop enhanced versions of already existing crawling tech-
niques specifically conceived for SIS’s instead of for OSNs and highly benefiting
of me edges.
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