

PRIVACY-PRESERVING MINING OF ASSOCIATION RULES FROM OUTSOURCED TRANSACTION DATABASES

F. Giannotti, L. Lakshmanan, A. Monreale, D. Pedreschi and W. Wang

Knowledge Discovery and Delivery Lab
(ISTI-CNR & Univ. Pisa)
www-kdd.isti.cnr.it

Introduction

2

- Availability of large transactional database
- Data are an important resource for an organization if
 - Processed
 - Analyzed
 - Transformed in Knowledge by KDD techniques
- Mining the data requires
 - Computational resources
 - In-house expertise for data mining

Privacy-Preserving Outsourcing of DM

3

- Organizations could do not posses
 - **in-house expertise** for doing data mining
 - **computing infrastructure** adequate
- **Solution:** Outsourcing of data mining to a service provider
 - specific human resources
 - technological resources
- The server has access to data of the owner
- Data owner has the property of both
 - **Data** can contain personal information about individuals
 - **Knowledge** extracted from data can provide competitive advantages

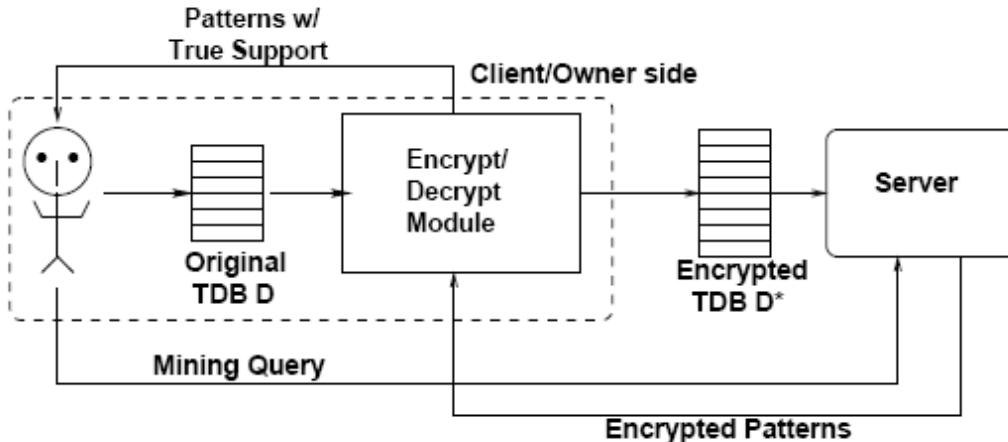
A valid solution

4

- A Privacy Model and so an Attack Model
- The Definition of an Encryption/Decryption Scheme
 - Efficient in time and space
 - Must allow the exact reconstruction of the query results

Framework Architecture

5



- The client encrypts its data using an encrypt/decrypt (ED) module
 - essentially treated as a “black box” from its perspective
- ED module transforms the input data into an encrypted database
- The server conducts data mining and sends the patterns to the client
- The ED module recovers the true identity of the returned patterns

Privacy Model

6

□ **Adversary Knowledge:** attacker

- knows the set of plain items and their true supports in D exactly
- has access to the encrypted database D*

Item	Sup
Bread	5
Milk	3
Water	2
Beer	1
Eggs	1

K-Anonymous TDB
$e_4 e_1$
e_4
e_3
e_2
$e_2 e_4$
$e_4 e_2$
$e_4 e_5$
$e_2 e_1$
$e_2 e_3$
e_5

□ **Attack Model**

- **Item-based attack:** guessing the plain item corresponding to the cipher item e with probability $prob(e)$
- **Itemset-based attack:** guessing the plain itemset corresponding to the cipher itemset E with probability $prob(E)$

Goal and Ideal Solution

7

- **Goal:** minimize the probabilities of crack of
 - an item $prob(e)$
 - an itemset (transaction or pattern) $prob(E)$
- **Ideal Solution:**
 - every cipher item should have as candidates all the items in D
 - every cipher itemset should have as candidates all the itemset with same size in D
- **Problem:** explosion in the computational effort required for mining patterns from D^*

K-Privacy

8

□ Our Solution: use the well-known **k-anonymity** notion

Definition 1 (Item k -anonymity). Let D be a transaction database and D^* its encrypted version. We say D^* satisfies the property of *item k -anonymity* provided for every cipher item $e \in \mathcal{E}$, there are at least $k - 1$ other distinct cipher items $e_1, \dots, e_{k-1} \in \mathcal{E}$ such that $supp_{D^*}(e) = supp_{D^*}(e_i)$, $1 \leq i \leq k - 1$. □

Definition 2 (k -Privacy). Given a database D and its encrypted version D^* , we say D^* is k -private if:

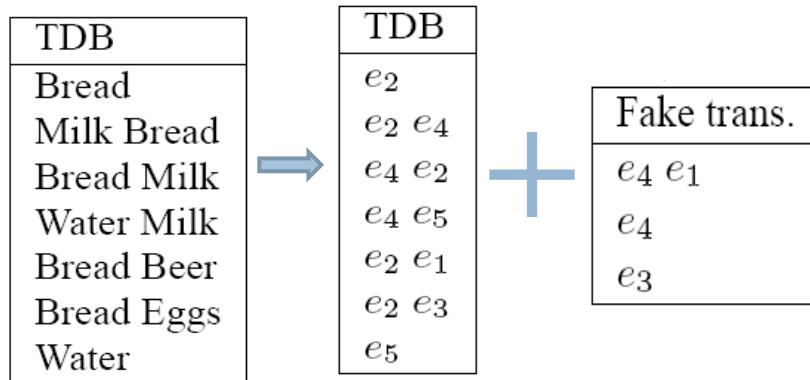
- (1) for each cipher item $e \in D^*$, $prob(e) \leq 1/k$; and
- (2) for each cipher itemset E with support $supp_{D^*}(E) > 0$, $prob(E) \leq 1/k$. □

Encryption and Decryption

9

□ **Encryption:**

- Replacing each plain item in D by a 1-1 substitution cipher
- **K-Grouping:** for each item e there are at least others $k-1$ enciphered items with same support
- Adding fake transactions



□ **Decryption:** A Synopsis allows computing the actual support of every pattern

RobFrugal: k-Private Grouping Method

10

- The idea: obtaining **Robust k-groups** unsupported in D
- RobFrugal Grouping
 - Given the TDB D and its item support table in decreasing order of support:
 - **Step1:** grouping together cipher items into groups of k adjacent items
Obtaining $\mathbf{G} = (G_1, \dots, G_m)$ (**Frugal Grouping**)
 - **Step2:** modifying the groups of G by swapping operations, until no group of items is supported in D

TDB
e_2
$e_2 e_4$
$e_4 e_2$
$e_4 e_5$
$e_2 e_1$
$e_2 e_3$
e_5

Item	Support
e_2	5
e_4	3
e_5	2
e_1	1
e_3	1

Item	Support
e_2	5
e_5	2
e_4	3
e_1	1
e_3	1

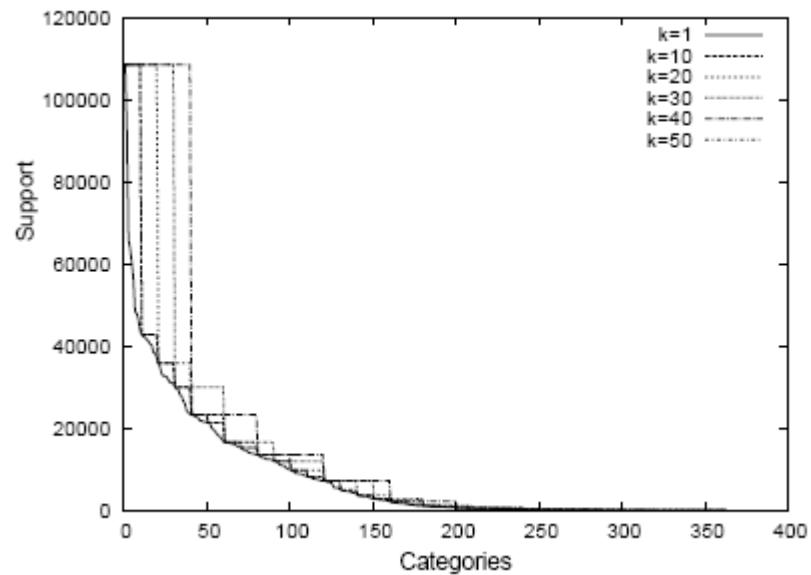
How create Fake Transactions?

11

- Output of the grouping step is a **Noise table**

Item	Support	Noise
e_2	5	0
e_5	2	3
e_4	3	0
e_1	1	2
e_3	1	2

Item	Noise
e_5	3
e_3	2
e_1	2



$\{e_5\}$
 $\{e_5\}e_3\{e_1\}$
 $\{e_5, e_3\}e_4\{e_5, e_3\}$

$L > L_{\max}$

Synopsis in client-side

12

- The noise table provides a compact *synopsis*
 - used for decryption to compute the true support of a pattern
 - represents the fake transactions
- Hash table created with a *minimal perfect hash function*

Item	Noise
e_5	3
e_3	2
e_1	2

e_5 = item
1 = $\{e_5\}$ occurs once
2 = $\{e_5, e_3\}$ occurs 2 times

Fake Trans.

$\{e_5\}$
 $\{e_1\} \{e_1\}$
 $\{e_5, e_3\} \{e_5, e_3\}$

Table1	
0	$\langle e_5, 1, 2 \rangle$
1	$\langle e_3, 2, 0 \rangle$

Table2	
0	$\langle e_1, 2, 0 \rangle$

Decryption: How to use the synopsis?

13

- The client receives frequent patterns mined over D^*
- Synopsis allows computing the actual support of every pattern

Item	Support	Noise
e_2	5	0
e_5	2	3
e_4	3	0
e_1	1	2
e_3	1	2

Table1	
0	$\langle e_5, 1, 2 \rangle$
1	$\langle e_3, 2, 0 \rangle$

Table2	
0	$\langle e_1, 2, 0 \rangle$

Fake Trans.

$\{e_5\}$

$\{e_1\}$ $\{e_1\}$

$\{e_5, e_3\}$ $\{e_5, e_3\}$

- $RS(\{e_5\}) = supp_{D^*} - supp_{D^* \setminus D} = 5 - (1 + 2) = 2$
- $RS(\{e_5, e_3\}) = supp_{D^*} - supp_{D^* \setminus D} = 2 - (2 + 0) = 0$

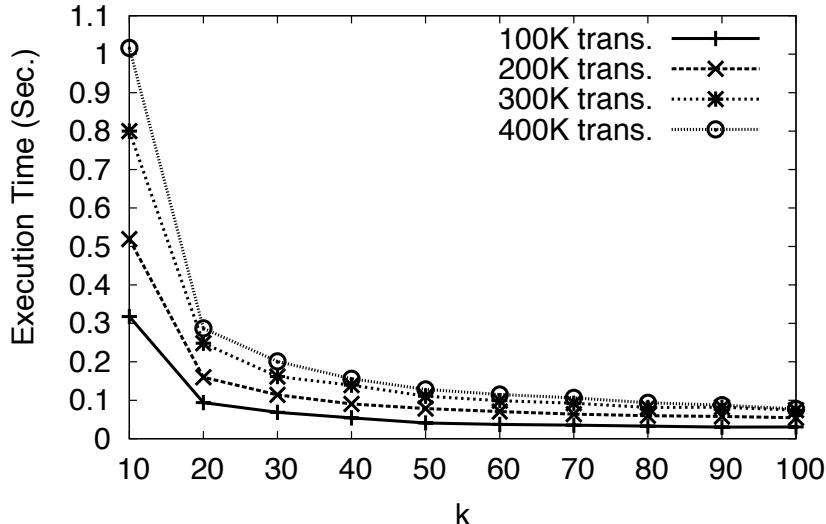
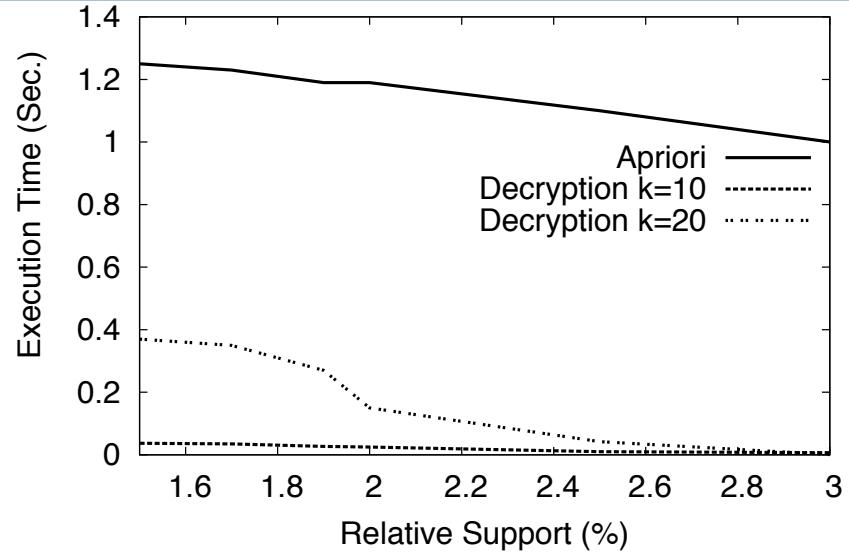
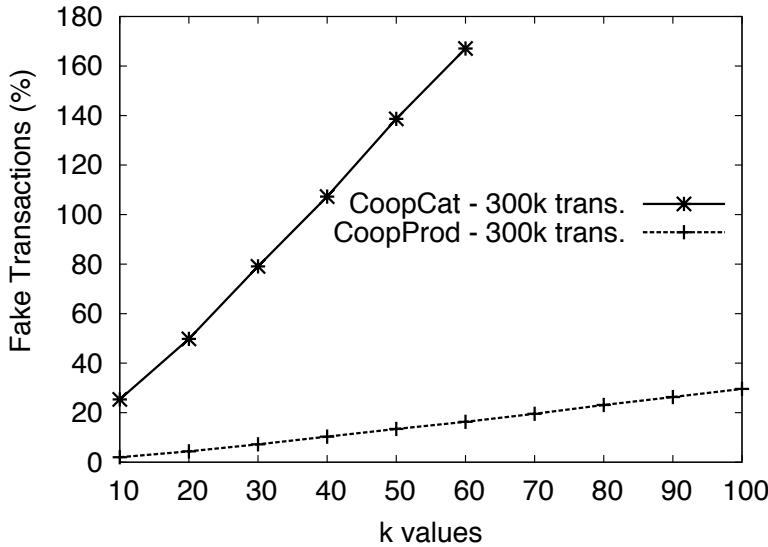
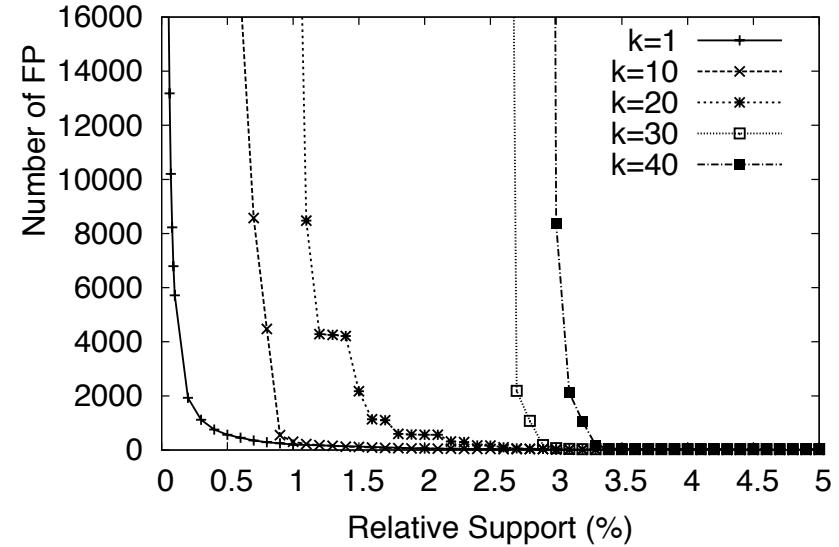
Complexity

14

- **Encryption** by RobFrugal scheme requires
 - $O(n)$ space
 - $O(n^2)$ time
- **Decryption** requires $O(|E|)$ for each pattern E

Client and Server Overhead: Coop Data

15



Privacy Analysis

16

- Item-based attack
 - **RobFrugal** guarantees the k-privacy against the item-based attack ($\text{prob}(e) \leq 1/k$)
- Itemset-based attack
 - **RobFrugal** guarantees the k-privacy against the itemset-based attack ($\text{prob}(E) \leq 1/k$)
- On Coop dataset for $k=10$ we have:
 - 5% of transactions have exactly a crack probability $1/10$
 - 95% of transactions have a probability strictly smaller than $1/10$
 - 90% have a probability strictly smaller than $1/100$
 - No single transaction contains any pattern consisting exactly of the items in a group created by RobFrugal

Conclusion

17

- An Encryption/Decryption Schema for privacy-preserving outsourcing of association rules mining
- Preliminary experiments on large real database
- Issues to be addressed:
 - Complexity Analysis
 - Privacy analysis to prove that the crack probability can be controlled
 - Strategy for incrementally maintaining the synopsis

Thank You!