
Privacy-preserving Mining of Association Rules
from Outsourced Transaction Databases?

Fosca Giannotti1, Laks V.S. Lakshmanan2, Anna Monreale1,3,
Dino Pedreschi3, and Hui Wang4

1 ISTI-CNR, Pisa, Italy, fosca.giannotti@isti.cnr.it
2 University of British Columbia, Vancouver, Canada laks@cs.ubc.ca

3 University of Pisa, Pisa, Italy, annam@di.unipi.it, pedre@di.unipi.it
4 Stevens Institute of Technology, NJ, USA hwang@cs.stevens.edu

Privacy-preserving Mining of Association Rules from
Outsourced Transaction Databases

Extended Abstract

Fosca Giannotti1, Laks V.S. Lakshmanan2, Anna Monreale1,3, Dino Pedreschi3, Hui
Wang4

1 ISTI-CNR, Pisa, Italy, fosca.giannotti@isti.cnr.it
2 University of British Columbia, Vancouver, Canada laks@cs.ubc.ca

3 University of Pisa, Pisa, Italy, annam@di.unipi.it, pedre@di.unipi.it
4 Stevens Institute of Technology, NJ, USA hwang@cs.stevens.edu

Abstract. Spurred by developments such as cloud computing, there has been
considerable recent interest in the paradigm of data mining-as-service. A com-
pany (data owner) lacking in expertise or computational resources can outsource
its mining needs to a third party service provider (server). However, both the
items and the association rules of the outsourced database are considered private
property of the corporation (data owner). To protect corporate privacy, the data
owner transforms its data and ships it to the server, sends mining queries to the
server, and recovers the true patterns from the extracted patterns received from
the server. In this paper, we study the problem of outsourcing the association
rule mining task within a corporate privacy-preserving framework. We propose
a scheme for privacy preserving outsourced mining and show that the owner can
recover the true patterns as well as their support by maintaining a compact syn-
opsis.

1 Introduction

In recent years, there has been considerable interest in the data mining-as-service para-
digm for enabling organizations with limited computational resources and/or data min-
ing expertise to outsource their data mining needs to a third party service provider [2,
9, 6, 5, 13]. As an example, the operational transactional data from various outlets of
Safeway, a grocery chain operating in the US and Canada, can be shipped to a third
party which provides mining service for Safeway. The Safeway management need not
employ an in-house team of data mining experts. Besides, they can cut down their lo-
cal data management requirements because periodically data is shipped to the service
provider who is in charge of maintaining it and conducting mining on it in response
to requests from Safeway’s business analysts. In this example, Safeway, the client, is a
data owner and the service provider is referred to as the server. One of the main issues
with this paradigm is that the server has access to valuable data of the owner and may
learn sensitive information from it. E.g., by looking at the transactions, the server (or
an intruder who gains access to the server) can learn which items are co-purchased,
and in turn, the mined patterns. However, both the transactions and the mined patterns

? Extended Abstract

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

234 F. Giannotti et al.

are the property of Safeway and should remain safe from the server. This problem of
protecting important private information of organizations/companies is referred to as
”corporate privacy” [7]. Unlike personal privacy, which only considers the protection
of the personal information recorded about individuals, corporate privacy requires that
both the individual items and the patterns of the collection of data items are regarded as
corporate assets and thus must be protected.

In this paper, we study the problem of outsourcing the association rule mining task
within a corporate privacy-preserving framework (already presented in [8]).We propose

TDB D*

Server

Original
TDB D

Encrypt/
Decrypt
Module

Encrypted Patterns

Mining Query

True Support
Patterns w/

Client/Owner side

Encrypted

Fig. 1. Architecture of Mining-as-Service Paradigm.

an encryption scheme which enables privacy guarantees, and show some preliminary
results obtained applying this model over large-scale, real-life transaction databases.
The architecture behind our model is illustrated in Fig. 1. The client/owner encrypts
its data using an encrypt/decrypt (ED) module, which can be treated as a “black box”
from its perspective. This module is responsible for transforming the input data into an
encrypted database. The server conducts data mining and sends the (encrypted) patterns
to the owner. Our encryption scheme has the property that the returned supports are not
true supports. The ED module recovers the true identity of the returned patterns as well
their true supports.

2 Related Work
In this section we outline the work on privacy-preserving data publishing and mining.
Privacy-preserving data publishing (PPDP): The idea is that data is published with
appropriate suppression, generalization, distortion, and/or decomposition such that in-
dividual privacy is not compromised and yet the published data is useful for mining [12,
10, 14].
Privacy-preserving data mining (PPDM): The main model here is that private data
is collected from a number of sources by a collector for the purpose of consolidating
the data and conducting mining. The collector is not trusted, so data is subjected to a
random perturbation as it is collected. This body of work was pioneered by [2] and has
been followed up by several papers since [11, 3].
Privacy-preserving pattern publishing (PPPP): The central question is how to publish
results of mining such as frequent patterns without revealing any sensitive information
about the underlying data [4], but the resulting patterns are disclosed.

A key distinction between our problem and the above mentioned PPDM problems
is that, in our setting, not only the underlying data but also the mined results are not

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Privacy-preserving Mining of AR from Outsourced Transaction Databases 235

intended for sharing and must remain private. The work that is most related to ours
is [13]. Similar to our work, first, they utilize a one-to-n item mapping together with
non-deterministic addition of cipher items to protect the identification of individual
items. Second, they assume that the adversary may possess some prior knowledge of
frequency of the itemsets, which can be used to decipher the encrypted items. While
our attack model focuses on single items with the assumption that the attacker knows
the exact frequency of every single item. The major issue left open by [13] is a formal
protection result: their security analysis is entirely conducted empirically on various
synthetic datasets.

3 Preliminaries: pattern mining

The reader is assumed to be familiar with the basics of association rule mining. Two
major steps in mining association rules are: (i) finding frequent patterns and (ii) com-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2000 4000 6000 8000 10000 12000 14000

S
up

po
rt

Products

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700 800

S
up

po
rt

Products

k=1
k=10
k=30
k=30
k=40
k=50

Fig. 2. Item Support Distribution: CoopProd (left); Encrypted CoopProd (right)

puting the association rules from them. Step (i) is the computationally dominant step.
We briefly review frequent pattern mining below. Let I = i1, ..., in be the set of items
and D = t1, . . . , tm a transaction database (TDB) of transactions, each of which is a
set of items. We denote the support of an itemset S ⊆ I as suppD(S) and the fre-
quency by f reqD(S). Recall, f reqD(S) = suppD(S)/|D|. For each item i, suppD(i) and
f reqD(i) denote respectively the individual support and frequency of i. The whole func-
tion suppD(.), projected over items, is also called the item support table of D. It can be
either represented in tabular form (see, e.g., Table 1 (a)), or plotted as a histogram, as in
Fig. 2, where the item support distribution of the real-life Coop TDB is reported; both
in support tables and in histograms items are listed in decreasing order of their support.
The length of a transaction t ∈ D is the number of items in t. We define the size of a
TDB D as the sum of lengths of its transactions, i.e., ||D|| = ∑t∈D |t|. It is easy to see
that ||D||= ∑i∈I suppD(i). This corresponds to the area under the support distribution
graph (e.g., see Fig. 2). The frequent pattern mining problem [1] is: given a TDB D and
a support threshold σ , find all patterns whose support in D is at least σ . We study a
(corporate) privacy-preserving outsourcing framework for frequent pattern mining.

4 Privacy Model

We let D denote the original TDB that the owner has. To protect the identification of
individual items, the owner applies an encryption function to D and transforms it to

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

236 F. Giannotti et al.

D∗, the encrypted database. We refer to items in D as plain items and items in D∗ as
cipher items. The term item shall mean plain item by default. The notions of plain item
sets, plain transactions, plain patterns, and their cipher counterparts are defined in the
obvious way. We use I to denote the set of plain items and E to refer to the set of
cipher items.

Adversary Knowledge. The server or an intruder (attacker) who gains access to
the database may possess some background knowledge using which they can conduct
attacks on the encrypted database D∗ in order to make inferences.

We adopt a conservative model and assume that the attacker knows exactly the set
of (plain) items I in the original transaction database D and their true supports in
D, i.e., suppD(i), i ∈I . The attacker may have access to similar data from a competing
company,may read published reports, etc. Moreover we assume the attacker has access
to the encrypted database D∗. Thus, he also knows the set of cipher items and their
support in D∗, i.e., suppD∗(e), e ∈ E .

In this paper we propose an encryption scheme based on: (i) replacing each plain
item in D by a 1-1 substitution cipher (ii) adding fake transactions to the database. In
particular, no new items are added. We assume the attacker knows this and thus he
knows that |E |= |I |. We also assume the attacker knows the details of our encryption
algorithm.

Attack Model. The data owner (i.e., the corporate) considers the true identity of:
(1) every cipher item, (2) every cipher transaction, and (3) every cipher frequent pattern
as the intellectual property which should be protected. If the cipher items are broken,
i.e., their true identification is inferred by the attacker, then clearly cipher transactions
and cipher patterns are broken, so they also must remain protected. The attack model is
two-fold:

• Item-based attack: ∀ cipher item e∈E , the attacker constructs a set of candidate plain
itemsCand(e)⊂ I . The probability that the cipher item e can be broken prob(e) =
1/|Cand(e)|.

• Set-based attack: Given a cipher itemset E , the attacker constructs a set of candidate
plain itemsets Cand(E), where ∀X ∈ Cand(E), X ⊂ I , and |X | = |E|. The proba-
bility that the cipher itemset E can be broken prob(E) = 1/|Cand(E)|.

We refer to prob(e) and prob(E) as probabilities of crack. From the point of view of
the owner, minimizing the probabilities of crack is desirable. Intuitively, Cand(e) and
Cand(E) should be as large as possible. Ideally, Cand(e) should be the whole set of
plaintext items. This can be achieved if we bring each cipher item to the same level of
support, e.g., to the support of the most frequent item in D. Unfortunately, this option is
impractical. In fact, we have a large increase in the size ofD∗ compared toD, i.e., a large
size of the fake transactions. This in turn leads to a dramatic explosion of the frequent
patterns, making pattern mining at the server side computationally prohibitive. This is
the motivation for relaxing the equal-support constraint and introducing k-anonymity
as a compromise.

Definition 1 (Item k-anonymity). Let D be a transaction database and D∗ its en-
crypted version. We say D∗ satisfies the property of item k-anonymity provided for every

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Privacy-preserving Mining of AR from Outsourced Transaction Databases 237

cipher item e ∈ E , there are at least k− 1 other distinct cipher items e1, ...,ek−1 ∈ E
such that suppD∗(e) = suppD∗(ei), 1≤ i≤ k− 1. ⊓⊔

Fig.2 (right) shows the effect of grouping together cipher items into groups of k
items. For a given value of k, the support distribution resembles a descending staircase.
With small k, the graph tends to the original support distribution in D; while as k in-
creases, the graph gets closer to the horizontal line discussed above. As the size of D∗

is the area below the graph, we can control the size of D∗ by an appropriate choice of k.
To quantify the privacy guarantee of an encrypted database, we define the following

notion:

Definition 2 (k–Privacy).Given a database D and its encrypted version D∗, we say D∗

is k-private if: (1) for each cipher item e ∈ D∗, prob(e)≤ 1/k; and (2) for each cipher
itemset E with support suppD∗(E)> 0, prob(E)≤ 1/k. ⊓⊔

This definition does not constrain the crack probability of cipher itemsets which
have no support in D∗. Intuitively, such cipher itemsets are not interesting. This will
be exploited in Sec. 5 in designing effective k-private encryption schemes. Formally,
the problem we study is the following: Given a plain database D, construct a k-private
cipher database D∗ by using substitution ciphers and adding fake transactions such that
from the set of frequent cipher patterns and their support in D∗ sent to the owner by the
server, the owner can reconstruct the true frequent patterns of D and their exact support.
Additionally, we would like to minimize the space and time incurred by the owner in
the process and the mining overhead incurred by the server.

TDB
Bread
Milk Bread
Bread Milk
Water Milk
Bread Beer
Bread Eggs
Water

Item Sup
Bread 5
Milk 3
Water 2
Beer 1
Eggs 1

Map−−→

TDB
e2
e2 e4
e4 e2
e4 e5
e2 e1
e2 e3
e5

Item Sup
e2 5
e4 3
e5 2
e1 1
e3 1

k = 2−−−→

FT
e4 e1
e4
e3

→

k-Priv.
TDB
e4 e1
e4
e3
e2
e2 e4
e4 e2
e4 e5
e2 e1
e2 e3
e5

Sends−−−→Server Server FPσ = 2−−−−−→

FPs Sup
e1 2
e2 5
e3 2
e4 5
e5 2
e2 e4 2

FT
e4 e1
e4
e3

→

FPs Sup
e2 5
e4 3
e5 2
e2 e4 2

(a) Encryption Module (b) Decryption Module

Fig. 3. E/D Module

5 Encryption/Decryption Scheme

In this section, we describe the ED module, originally presented in [8], responsible
for the encryption of TDB and for the decryption of the cipher patterns coming from
the server. The general idea of our Encryption/Decryption method is shown with an
example in Figure 3.

5.1 Encryption

In this section, we introduce the encryption scheme, which transforms a TDB D into its
encrypted version D∗. Our scheme is parametric w.r.t. k > 0 and consists of three main

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

238 F. Giannotti et al.

steps: (1) using 1-1 substitution ciphers for each plain item; (2) using a specific item
k-grouping method; (3) using a method for adding new fake transactions for achieving
k-privacy. The encryption scheme is a countermeasure to the item-based and set-based
attacks discussed in Sec. 4: since the attacker knows the exact support of each item,
we create a k-private D∗, such that the cipher items cannot be broken based on their
support.

k-GroupingMethod.Given the items support table, several strategies can be adopted
to cluster the items into groups of k. We assume the item support table is sorted in de-
scending order of support and refer to cipher items in this order as e1,e2, etc. To obtain
the formal protection that itemsets (or transactions) cannot be cracked with a probabil-
ity higher than 1

k , we need to use only grouping methods that yield groups of items that
are unsupported in D. We call such grouping methods robust:

Definition 3. Given a TDB D and a grouping G of the items occurring in D, G is called
robust for D iff, for any group Gi of G, suppD(Gi) = 0. ⊓⊔

The above definition directly suggests a procedure for checking whether a given
grouping G for a TDB D is robust: it is sufficient to check that the support in D of
each group Gi in G is 0. If this is the case, the grouping can be safely used to obtain
the maximum privacy protection guaranteed by our method. The following definition
introduces our grouping method.

Definition 4. Given the TDB D and its item support table in decreasing order of sup-
port, our grouping method:

STEP1: groups together cipher items into groups of k adjacent items starting from the
most frequent item e1, obtaining the grouping G= (G1, ...,Gm).

STEP2: modifies the groups of G by repeating the following operations, until no group
of items is supported in D: (1)Select the smallest j ≥ 1 such that suppD(G j) > 0;
(2) Find the most frequent item i′ 6∈ G j such that, for the least frequent item i of G j
we have: suppD(G j \{i}∪{i′}) = 0; (3) Swap i with i′ in the grouping. ⊓⊔

The output of grouping can be represented as the noise table. It extends the item sup-
port table with an extra column Noise indicating, for each cipher item e, the difference
among the support of the most frequent cipher item in e’s group and the support of e
itself, as reported in the item support table. We denote the noise of a cipher item e as
N(e). The noise column indicates, for each cipher item e, the number of occurrences
of e that are needed in D∗ in order to bring e to the same support as the most frequent
item of e’s group. As such, the noise table represents the tool for generating the fake
transactions to be added to D to obtain D∗. In particular, the total size of the needed
fake transactions is exactly the summation of all the values in the Noise column of the
noise table.

The noise table provides a compact synopsis (using O(n) space, where n is the
number of items) that can be stored by the ED module, to support both the creation of
the fake transaction and the decryption step. For example, consider the example TDB
in Figure 3, and its associated (cipher) item support table in Table 1 (a). For k = 2, the
grouping method generates two groups: {e2,e5} and {e4,e1,e3} (Table 1 (b)), that is

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Privacy-preserving Mining of AR from Outsourced Transaction Databases 239

(a) IST
Item Support
e2 5
e4 3
e5 2
e1 1
e3 1

(b) Grouping
Item Support
e2 5
e5 2
e4 3
e1 1
e3 1

(c) Noise Table
Item Support Noise
e2 5 0
e5 2 3
e4 3 0
e1 1 2
e3 1 2

(d) Hash Tables
Table1

0 〈e5,1,2〉
1 〈e3,2,0〉

Table2
0 〈e1,2,0〉

Table 1. Encryption with k = 2

robust: none of the two groups, considered as itemsets, is supported by any transaction
in D.

Fake Transactions. Given a noise table specifying the noise N(e) needed for each
cipher item e, we generate the fake transactions as follows. First, we drop the rows with
zero noise, corresponding to the most frequent items of each group or to other items
with support equal to the maximum support of a group. Second, we sort the remaining
rows in descending order of noise. Let e′1, . . . ,e′m be the obtained ordering of (remaining)
cipher items, with associated noise N(e′1), . . . ,N(e′m). The following fake transactions
are generated:
• N(e′1)−N(e′2) instances of the transaction {e′1}
• N(e′2)−N(e′3) instances of the transaction {e′1,e′2}
• . . .

• N(e′m−1)−N(e′m) instances of the transaction {e′1, . . . ,e′m−1}
• N(e′m) instances of the transaction {e′1, . . . ,e′m}

Continuing the example, we consider cipher items of non-zero noise in Table 1
(c). The following two fake transactions are generated: 2 instances of the transaction
{e5,e3,e1} and 1 instance of the transaction {e5}. We observe that fake transactions
introduced by this method may be longer than any transactions in the original TDB D.
So, we consider shortening the lengths of the added fake transactions so that they are
in line with the transaction lengths in D. In our running examples above, we obtain
{e5,e3}, 2 of {e1} and 1 instance of {e5}.

To implement the synopsis efficiently we use a hash table generated with a minimal
perfect hash function. Minimal perfect hash functions are widely used for memory effi-
cient storage and fast retrieval of items from static sets. In our scheme, the items of the
noise table ei with N(ei) > 0 are the keys of the minimal perfect hash function. Given
ei, function h computes an integer in [0 . . .n− 1], denoting the position of the hash ta-
ble storing the triple of values 〈ei, timesi,occi〉, where: timesi represents the number of
times the fake transaction {e1,e2, . . . ,ei} occurs in the set of fake transactions and occi
is the number of times that ei occurs altogether in the future fake transactions after the
transaction {e1,e2, . . . ,ei}.

Given a noise table with m items with non-null noise, our approach generates hash
tables for the group of items. In general, the i-th entry of a hash table HT containing
the item ei has timesi = N(ei)−N(ei+1),occi = ∑g

j=i+1N(e j), where g is the number
of items in the current group. Notice that each hash table HT represents concisely the
fake transactions involving all and only the items in a group of g≤ lmax items. The hash
tables for the items of non-zero noise in Table 1 (c) are shown in Table 1(d). Given
that in our example, lmax = 2, we need to split the 3 items of non-zero noise in Table
1 into two sets, each with associated fake transactions, coded by the two hash tables.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

240 F. Giannotti et al.

Notice that any pattern consisting of items from different hash tables is not supported
by any fake transactions. Finally, we use a (second-level) ordinary hash function H to
map each item e to the hash table HT containing e.

The constructed fake transactions are added to D (once items are replaced by cipher
items) to form D∗, and transmitted to the server. A record of the fake transactions, i.e.,
DF = D∗ \D, is stored by the ED module, by the compact synopsis described above.

5.2 Decryption

When the client requests the execution of a pattern mining query to the server, specify-
ing a minimum support threshold σ , the server returns the computed frequent patterns
from D∗. Clearly, for every itemset S and its corresponding cipher itemset E , we have
suppD(S)≤ suppD∗(E). Therefore, our encryption scheme guarantees that all itemsets
frequent in D will be returned, in cipher version, by the server. But additional patterns
frequent in D∗, but not in D, are returned as well. For each cipher pattern E returned by
the server together with suppD∗(E), the ED module trivially recovers the corresponding
plain pattern S as follows: suppD(S) = suppD∗(E)− suppD∗\D(E).

This calculation is efficiently performed by the ED module using the synopsis of
the fake transactions in D∗ \D described above.

6 Preliminary Experimental Results

Data Set: We empirically assess our encryption method with respect to a real-life trans-
action database donated by Coop, a cooperative of consumers that is today the largest
supermarket chain in Italy5. We selected 300,000 transactions involving 13,730 differ-
ent products.
Encryption overhead: we assess the size of fake transactions added to CoopProd∗ after
encryption; Fig. 4 (b) reports the sizes of fake transactions for different k values. We
observe that the size of fake transactions increases linearly with k.
Mining overhead: We study the overhead at server side in the pattern mining task
over CoopProd∗ w.r.t. CoopProd. We adopted the Apriori implementation by Christian
Borgelt6. Instead of measuring performance in run time, we measure the increase in
the number of frequent patterns obtained from mining the encrypted TDB, considering
different support thresholds. Results are plotted in Fig. 4(a), for different values of k;
notice that k = 1 means that the original and encrypted TDB are the same. We observe
that the number of frequent patterns, at a given support threshold, increases with k, as
expected. However, mining over CoopProd∗ exhibits a small overhead even for very
small support thresholds, e.g., a support threshold of about 1% for k= 10 and 1.5% for
k= 20.We found that, for reasonably small values of the support threshold, the incurred
overhead at server side is kept under control; clearly, a trade-off exists between the level
of privacy, which increases with k, and the minimum affordable support threshold for
mining, which also increases with k.

5 http://www.e-coop.it/, in Italian
6 http://www.borgelt.net

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

Privacy-preserving Mining of AR from Outsourced Transaction Databases 241

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r o

f F
P

Relative Support (%)

CoopProd - 300k trans.

k=1
k=10
k=20
k=30
k=40

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

Fa
ke

 T
ra

ns
ac

tio
ns

 (%
)

k values

CoopProd - 300k trans.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
xe

cu
tio

n
Ti

m
e

(S
ec

.)

Relative Support (%)

CoopProd

Apriori
Decryption k=10
Decryption k=20

(a)Mining overhead at server side (b)Fraction of fake transactions (c)Decryption time vs. mining time

Fig. 4. Overhead at server side and Decryption overhead

Decryption overhead by the ED module: We now consider the feasibility of the pro-
posed outsourcing model. The ED module encrypts the TDB once which is sent to the
server. Mining is conducted repeatedly at the server side and decrypted every time by
the ED module. Thus, we need to compare the decryption time with the time of directly
executing apriori over the original database. As shown in Fig. 4(c), the decryption time
is about one order of magnitude smaller than the mining time; for higher support thresh-
old, the gap increases to about two orders of magnitude.

7 Conclusion and Future Work

We studied the problem of (corporate) privacy-preserving outsourcing of association
rule mining. Our encryption scheme is based on 1-1 substitutions and fake transac-
tions such that the transformed database satisfies k-anonymity w.r.t. items and itemsets.
Moreover we showed some preliminary empirical results that are encouraging; natu-
rally, there are many interesting open issues to be investigated. The next steps include:
(1) The study of a formal analysis based on our attack model and the proof that the
probability that an itemset can be broken by the server can always be controlled to be
below a threshold chosen by the owner, by setting the anonymity threshold k; (2) The
complexity analysis of our encryption/decryption scheme; (3) The definition of an strat-
egy for incrementally maintaining the synopsis at the client side against updates in the
form of appends. (4) scheme using large real data set with different sparsity/density
properties to understand how it works in different settings; (5) The analysis of the scal-
ability of the proposed approach and comparison of the execution time of the mining
step with that of the decryption step by using a mining algorithm like FP-growth, that
could be more efficient than an apriori-based algorithm.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. VLDB 1994.
2. R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD 2000.
3. S. Agrawal, J. R. Haritsa: A Framework for High-Accuracy Privacy-Preserving Mining.

ICDE 2005.
4. M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi: Anonymity preserving pattern discovery.

VLDB J. 17(4): 703-727 (2008).

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

242 F. Giannotti et al.

5. S. Bu et al. Preservation of patterns and input-output privacy. ICDE 2007
6. K. Chen et al. Toward attack-resilient geometric data perturbbation. SDM, 2007.
7. C. Clifton, M. Kantarcioglu, J. Vaidya. Defining Privacy for Data Mining. NSF Workshop

on Next Generation Data Mining, 2002.
8. F. Giannotti, L.V.S. Lakshmanan, A. Monreale, D. Pedreschi and H. Wang. Privacy-

Preserving Data Mining from Outsourced Databases. CPDP 2011.
9. L.V.S. Lakshmanan, R.T. Ng, G. Ramesh. To Do or Not To Do: The Dilemma of Disclosing

Anonymized Data. SIGMOD 2005.
10. A. Machanavajjhala, J. Gehrke, and D. Kifer. l-diversity: Privacy beyond k-anonymity. In

ICDE, 2006.
11. S. Rizvi, J. R. Haritsa: Maintaining Data Privacy in Association Rule Mining. VLDB 2002.
12. P. Samarati. Protecting respondents’ identities in microdata release. TKDE, 13(6):1010-

1027, 2001.
13. W. K. Wong, D. W. Cheung, E. Hung, B. Kao, N. Mamoulis. Security in Outsourcing of

Association Rule Mining. VLDB 2007.
14. X. Xiao and Y. Tao. Anatomy: Simple and Effective Privacy Preservation. VLDB 2006.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors

