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Abstract. In this paper, we introduce ClustCube, an innovative OLAP-based
framework for clustering and mining complex database objects extracted from
distributed database settings. To this end, ClustCube puts together
conventional clustering techniques and well-consolidated OLAP methodologies
in order to achieve higher expressive power and mining effectiveness over
traditional methodologies for mining tuple-oriented information.

1 Introduction

While lot of proposals on mining traditional datasets exist (e.g., [12,3,6,8,2,13,9,7,4]),
Data Mining researchers have devoted poor attention to the problem of effectively and
efficiently mining complex objects, for instance extracted from distributed database
settings [12]. Contrary to this actual trend, mining complex objects is indeed relevant in
practical application scenarios, as modern database systems are more and more immersed
in object-oriented scenarios rather than tuple-oriented scenarios. Among the wide family
of Data Mining techniques available in the active literature, since objects essentially
aggregate low-level fields (which, in turn, are extracted from attribute values of the
underlying distributed database) into complex classes, it is natural to think of clustering
(e.g., [6]) as the most suitable technique to mine such so-derived structures. Also, the
combined action of clustering techniques and well-consolidated methodologies developed
in the context of OnLine Analytical Processing (OLAP) [3] clearly offers powerful tools
to mine clustered objects according to a multidimensional and multi-resolution vision of
the underlying object domain [5].

Inspired by these motivations, in this paper we propose an innovative OLAP-based
framework for clustering and mining complex database objects extracted from distributed
database settings, called ClustCube, which encompasses a number of research innovations
beyond the capabilities of actual Data Mining methodologies over large and complex-in-
nature databases (e.g., [12]). To this end, ClustCube combines the power of clustering
techniques over complex database objects and the power of OLAP in supporting
multidimensional analysis and knowledge fruition of (clustered) complex database objects,
with mining opportunities and expressive power infeasible for traditional methodologies.
So-obtained ClustCube cubes store clustered complex database objects within cube cells,
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rather than conventional SQL-based aggregations like in standard Business-Intelligence-
oriented OLAP data cubes.

Figure 1 shows the “big picture” of the research we propose, i.e. the ClustCube
overview. Basically, ClustCube defines a multiple-layer reference architecture that
encompasses the following well-separated layers: (i) Distributed DataBase Layer
(DDBL), where the target distributed database from which complex objects are extracted
is located; (it) Complex Object Definition Layer (CODL), which supports primitives and
functionalities for building and managing complex objects extracted from the DDBL
layer; (iii) the Object Layer (OL), where complex objects are located, along with a suitable
object schema; (iv) the ClusterCube Definition and Management Layer (CCDML), which
supports primitives and functionalities for defining and managing ClustCube cubes; (v)
the ClusterCube Layer (CCL), which stores the final ClustCube cube.
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Figure 1. ClustCube Overview

While the mining capabilities exposed by the ClustCube framework are clear and
evident enough, a major research challenge in the context of the ClustCube proposal is
represented by the issue of efficiently computing ClustCube cubes, enriched by the
respective cuboid lattices [3], which, similarly to conventional OLAP data cube
computation axioms (e.g., [1]) can be extremely resource-consuming on wide collections
of objects extracted from large distributed databases. In order to face-off this drawback,
we propose algorithms that meaningfully exploit the structured nature of complex
database objects within cuboids and the distributive nature of clustering across
hierarchical domains, like those defined by conventional OLAP schemas.

2 Modeling ClustCube Data Cubes

In this Section we provide details on the ClustCube data cube model, which is directly
inspired from the traditional OLAP data cube model [3], and we describe the solution for
computing ClustCube cubes. As mentioned in Section 1, ClustCube cubes store clustered
complex objects within cube cells. Complex objects at the OL layer (see Figure 1) are
clustered by the CCDML layer on the basis of analysis/mining tasks defined by the
administrator and implemented by a suitable class OScopr, following an innovative
clustering approach we describe next. The result of this phase is represented by the
materialized ClustCube cube C, which is finally stored in the CCL layer (see Figure 1).
To cluster complex objects and store them within the target ClustCube cube, the
CCDML layer makes use of an input clustering algorithm A, which is orthogonal to the
ClustCube framework itself. This means that any arbitrary clustering algorithm can be
exploited within the core of ClustCube, depending on particular characteristics of original
data stored in the DDBL layer and the specific clustering goals. In the ClustCube
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framework, we name A as abstract core clustering algorithm (hereinafter referred as core
algorithm). At a pure conceptual level, A captures general concepts that are applicable to
every clustering algorithm. In particular, clustering algorithms typically employ a distance
Sfunction [6] in order to determine how objects are partitioned into clusters, and the general
goal consists in obtaining clusters having minimal intra-cluster distance, i.e. the distance
between two objects belonging to the same cluster, and maximal inter-cluster distance, i.e.
the distance between two objects belonging to different clusters. In our framework, we
specialize this classical construct to the case of distance function over objects, which relies
on the structured nature of objects that, in turn, is based on low-level fields (see Section
1). Obviously, this approach implicitly assumes that object space is a metric space, as we
demonstrate next.

Given two objects 0i and o; of class OScopr, we introduce the following distance
function between o: and o; dcopr(0i, 05) : OScop. X OScop. — Ro*, which is defined as
follows:

dcopt (Oi' Oj) = 8cop ({05 Ag, -.v, 04 a|osanL|—1>' (Uj' Qg -+, 0j- a|oscom|—1>) 2)

such that: (i) o0;.a;, denotes the h-th field of the object o:; (which, in turn, has been
originally extracted from the corresponding attribute value An stored in a certain database
of the DDBL layer — see Section 1); (ii) dcopi(0i, 0j) : F(OScop) X F(OScopr) = Rot is a
distance function over the metric space induced by the set of fields of the class OScopL,
denoted by F(O0Scop). This metric space is the one taken as reference for the domain of
objects of class OScopL, as mentioned above. It is important to notice here that the set of
|0ScopLl fields of class OScopL are used to simultaneously cluster objects of set OlcopL by
means of algorithm A, based on the introduced distance function dcop.. Therefore, OScopL
fields properly play the role of clustering features [6]. We formally denote as F(OScopL)
the set of such features. As regards practical issues, it should be noted that clustering
algorithm A analyzes just a sub-set of L features in F(OScopL), such that L < 10Scopil, in
order to cluster objects of class OScop, according to well-understood clustering principles
[6].

Now, focus the attention on the structure of ClustCube cubes in a greater detail. Given
a ClustCube cube C characterized by the set of dimensions D = {do, di, ..., dv.1}, such
that N = 10Scopil, being dimensions in D corresponding to features in F(OScop.), each
ClustCube cube cell ([io][iz]...[in-1] = C[1] in C, such that 0 <ip<Idol,0 <iz <Idil,...,0 <
in-1 < ldn4l, denoting T = (iy, iy, ..., iy_1) an N-dimensional entry in the N-dimensional
space of C, ([I] stores a set of clustered objects, denoted by Olcopi(([I]), that are
obtained by simultaneously clustering objects in Olcop. with respect to the
dimensions/features do, di, ..., dv-1 in D/ F(0Scopr). Hence, it is trivial to observe that, for
each ClustCube cube cell ([I] in C multidimensional boundaries of ([I] along the

dimension di, denoted by BE" and B, ", respectively, with Bg” < B,?, are determined by

the A-based clustering of objects in Olcop. with respect to feature d; in D. In other words,
while in traditional OLAP data cubes [3] the multidimensional boundaries of data cube
cells along dimensions are determined by the input OLAP aggregation scheme (e.g., [1]),
in ClustCube cubes multidimensional boundaries of ClustCube cube cells along
dimensions are the result of the clustering process itself.
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Figure 2. Traditional OLAP Scheme-Driven Aggregation (a) and ClustCube Clustering-Guided
Aggregation (b) for an Example Two-Dimensional House Sale Cube

This novelty has deep consequences even in the way cube aggregations are computed.
To become convinced of this, consider a simple case study focused on an house sale
dataset that logically defines a two-dimensional space characterized by the following
dimensions (features, respectively — see Figure 2 (a)): (i) Price, which represents the price
at which a certain house is sold; (if) Zipcode, which represents the zipcode of the city
where the house is located. Figure 2 (b) shows a possible clustering of such dataset with
respect to the features (dimensions, respectively) Price and Zipcode. Figure 2 (¢) shows
instead the projection of so-obtained clusters along both the dimensions, and, finally,
Figure 2 (d) shows the final (logical-representation) of the two-dimensional ClustCube
cube, where blue lines denote cube cells boundaries. It should be noted that, contrary to
traditional OLAP data cubes where tuples are aggregated according to regular and
somewhat natural groups along dimensional hierarchies defined by the input OLAP
aggregation scheme, thus determining regular partitions of the target data domain, in
novel ClustCube data cubes groups of objects stored in (ClustCube) cube cells correspond
to clusters computed by input clustering algorithm A, thus determining irregular partitions
of the target object domain following sort of a clustering-guided ClustCube aggregation
scheme. As shown in Figure 2 (d), given a ClustCube data cube C, every cell
(Tio][i1]...[in-1] in C may alternatively contain either a whole cluster generated from A or
a sub-cluster of it.
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3 Computing ClustCube Data Cubes

In this Section we provide details on how to compute ClustCube data cubes. One of the
most relevant contribution of our research consists in equipping the final ClustCube cube
generated by the CCDML layer (see Figure 1) with the canonical cubod lattice [3]. In
traditional OLAP, given an N-dimensional data cube C having D = {do, di, ..., dv1} as
dimension set, the cuboid lattice associated to C, denoted by L, is a hierarchical structure
composed by 2" — 1 cuboids, denoted by G, i.e. data (sub-)cubes that aggregate original
relational data according to arbitrary combinations of dimensions in 2D, each one at
different cardinality. In other words, an n-dimensional cuboid Ci of a data cube C
represents a particular n-dimensional view of C, such that 0 < n < N. For n = N, the base
cuboid is defined, which corresponds to the original data cube C. Cuboids of a certain
cuboid lattice L are naturally ordered by means of the precedence relation <, such that,
for each pair of cuboids Ci and G in L, G < G holds iff D; c Dj, such that D; denotes
the set of dimensions of Ci and D); denotes the set of dimensions of G, respectively. This
finally determines a cuboid hierarchy, denoted by JH(L). For instance, Figure 3 shows in
the left side the cuboid lattice L for a four-dimensional ClustCube cube C having D = {4,
B, C, D} as dimension set. Here, for instance, the property CD < BCD holds in H(L). Also,
from Figure 3 (left side), it should be clear enough that in the cuboid lattice £ of an N-
dimensional data cube C, cuboids are structurally organized according to N + 1 levels such
that I-dimensional cuboids are located at level [ of L are hierarchically linked to cuboids at
level -1 and I + 1 of L, respectively.

0-D Apex Cuboid

1-D Cuboid

2-D Cuboid

3-D Cuboid

4-D Base Cuboid

Figure 3. Cuboid Lattice of an Example Four-Dimensional ClustCube Cube, with Details on
Cuboids €D and BCD

Now, focus the attention on some important properties of the ClustCube data cube
model with respect to the proper clustering. Figure 3 shows in the right side clustered
objects stored by the cuboids €D and BCD, respectively. Here, it should be clear enough
that cuboid BCD stores clusters (of objects) that are conceptually obtained from clusters of
cuboid CD (which precedes BCD in HH(L), i.e. CD < BCD) by distributing objects in CD
with respect to the newly-added dimension/feature B. In the ClustCube framework, we
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fully take advantages from such a distributed nature of clustering across hierarchical
cuboids, being this nice amenity the key property that allows us to significantly reduce
computational needs due to compute ClustCube cube cuboid lattices. In fact, thanks to this
amenity, we do not need to compute cuboids from the scratch but any cuboid G at level [
of L, such that 2 < I < N, can be obtained from the cuboids at level I = 1, denoted by { (o,
Ci, ..., Cni}, simply by simultaneously distributing objects in C; with respect to the
features { Do, D1, ..., Dni} of {Co, Ci, ..., Cn-1}, respectively.

Given the input class OScopr, the collection of complex objects Olcop. and the input
clustering algorithm A, the CCDML layer computes the final ClustCube cube to be stored
at the CCL layer (see Figure 1). To this end, ClustCube framework comprises several
kinds of techniques for efficiently building the ClustCube cube C plus its cuboid lattice L
(each one codified by a respective ClustCube cube building algorithm), which differ with
respect to two orthogonal strategies, namely: (i) materialization strategy and (ii) building
strategy. Materialization strategies specify which cuboids, among the 2"~ 1 cuboids of £,
must be materialized, i.e. computed and stored (in secondary memory). On the other hand,
building strategies specify how cuboids are computed actually. With respect to the
materialization strategy, the following two alternatives are introduced in the ClustCube
framework: (i) full, denoted by FUL, according to which all cuboids of L are materialized;
(ii) partial, denoted by PAR, according to which a sub-set of the 2" — 1 cuboids of £ is
materialized. As regards the building strategy, ClustCube framework exposes the
following two different approaches: (i) baseline, denoted by BAS, according to which, for
each cuboid G in L, clusters are re-computed from the scratch (i.e., directly from input
objects in Olcopr); (i) drill-down, denoted by DRI, according to which cuboids at level I of
L are computed from cuboids at level I = 1 of L by means of a meaningfully distributive
method. It is critical to notice here that, in the ClustCube framework, the target ClustCube
cube C is obtained via computing the whole cuboid lattice £ in terms of the base cuboid

[3].
4 Conclusions and Future Work

A complete OLAP-based framework for clustering and mining complex objects
extracted from distributed database settings, called ClustCube, has been presented in this
paper. ClustCube encompasses a spectrum of research innovations towards the seamless
integration of consolidated clustering techniques over large databases and well-understood
OLAP methodologies for accessing and mining (complex) objects according to a
multidimensional and multi-resolution vision of the underlying object domain. Future
work is mainly oriented towards extending the proposed framework in order to make it
able of dealing with classification issues over complex database objects, beyond clustering
issues like those investigated in this research.
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