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Abstract. In this paper, we introduce ClustCube, an innovative OLAP-based 
framework for clustering and mining complex database objects extracted from 
distributed database settings. To this end, ClustCube puts together 
conventional clustering techniques and well-consolidated OLAP methodologies 
in order to achieve higher expressive power and mining effectiveness over 
traditional methodologies for mining tuple-oriented information. 

1   Introduction 

While lot of proposals on mining traditional datasets exist (e.g., [12,3,6,8,2,13,9,7,4]), 
Data Mining researchers have devoted poor attention to the problem of effectively and 
efficiently mining complex objects, for instance extracted from distributed database 
settings [12]. Contrary to this actual trend, mining complex objects is indeed relevant in 
practical application scenarios, as modern database systems are more and more immersed 
in object-oriented scenarios rather than tuple-oriented scenarios. Among the wide family 
of Data Mining techniques available in the active literature, since objects essentially 
aggregate low-level fields (which, in turn, are extracted from attribute values of the 
underlying distributed database) into complex classes, it is natural to think of clustering 
(e.g., [6]) as the most suitable technique to mine such so-derived structures. Also, the 
combined action of clustering techniques and well-consolidated methodologies developed 
in the context of OnLine Analytical Processing (OLAP) [3] clearly offers powerful tools 
to mine clustered objects according to a multidimensional and multi-resolution vision of 
the underlying object domain [5].  

Inspired by these motivations, in this paper we propose an innovative OLAP-based 
framework for clustering and mining complex database objects extracted from distributed 
database settings, called ClustCube, which encompasses a number of research innovations 
beyond the capabilities of actual Data Mining methodologies over large and complex-in-
nature databases (e.g., [12]). To this end, ClustCube combines the power of clustering 
techniques over complex database objects and the power of OLAP in supporting 
multidimensional analysis and knowledge fruition of (clustered) complex database objects, 
with mining opportunities and expressive power infeasible for traditional methodologies. 
So-obtained ClustCube cubes store clustered complex database objects within cube cells, 
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rather than conventional SQL-based aggregations like in standard Business-Intelligence-
oriented OLAP data cubes. 

Figure 1 shows the “big picture” of the research we propose, i.e. the ClustCube 
overview. Basically, ClustCube defines a multiple-layer reference architecture that 
encompasses the following well-separated layers: (i) Distributed DataBase Layer 
(DDBL), where the target distributed database from which complex objects are extracted 
is located; (ii) Complex Object Definition Layer (CODL), which supports primitives and 
functionalities for building and managing complex objects extracted from the DDBL 
layer; (iii) the Object Layer (OL), where complex objects are located, along with a suitable 
object schema; (iv) the ClusterCube Definition and Management Layer (CCDML), which 
supports primitives and functionalities for defining and managing ClustCube cubes; (v) 
the ClusterCube Layer (CCL), which stores the final ClustCube cube. 

 
Figure 1. ClustCube Overview 

While the mining capabilities exposed by the ClustCube framework are clear and 
evident enough, a major research challenge in the context of the ClustCube proposal is 
represented by the issue of efficiently computing ClustCube cubes, enriched by the 
respective cuboid lattices [3], which, similarly to conventional OLAP data cube 
computation axioms (e.g., [1]) can be extremely resource-consuming on wide collections 
of objects extracted from large distributed databases. In order to face-off this drawback, 
we propose algorithms that meaningfully exploit the structured nature of complex 
database objects within cuboids and the distributive nature of clustering across 
hierarchical domains, like those defined by conventional OLAP schemas. 

2   Modeling ClustCube Data Cubes  

In this Section we provide details on the ClustCube data cube model, which is directly 
inspired from the traditional OLAP data cube model [3], and we describe the solution for 
computing ClustCube cubes. As mentioned in Section 1, ClustCube cubes store clustered 
complex objects within cube cells. Complex objects at the OL layer (see Figure 1) are 
clustered by the CCDML layer on the basis of analysis/mining tasks defined by the 
administrator and implemented by a suitable class OSCODL, following an innovative 
clustering approach we describe next. The result of this phase is represented by the 
materialized ClustCube cube C, which is finally stored in the CCL layer (see Figure 1). 

To cluster complex objects and store them within the target ClustCube cube, the 
CCDML layer makes use of an input clustering algorithm A, which is orthogonal to the 
ClustCube framework itself. This means that any arbitrary clustering algorithm can be 
exploited within the core of ClustCube, depending on particular characteristics of original 
data stored in the DDBL layer and the specific clustering goals. In the ClustCube 
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framework, we name A as abstract core clustering algorithm (hereinafter referred as core 
algorithm). At a pure conceptual level, A captures general concepts that are applicable to 
every clustering algorithm. In particular, clustering algorithms typically employ a distance 
function [6] in order to determine how objects are partitioned into clusters, and the general 
goal consists in obtaining clusters having minimal intra-cluster distance, i.e. the distance 
between two objects belonging to the same cluster, and maximal inter-cluster distance, i.e. 
the distance between two objects belonging to different clusters. In our framework, we 
specialize this classical construct to the case of distance function over objects, which relies 
on the structured nature of objects that, in turn, is based on low-level fields (see Section 
1). Obviously, this approach implicitly assumes that object space is a metric space, as we 
demonstrate next. 

Given two objects oi and oj of class OSCODL, we introduce the following distance 
function between oi and oj dCODL(oi, oj) : OSCODL ×   OSCODL → ℝ0+, which is defined as 
follows: 

𝑑!"#$ 𝑜! , 𝑜! = 𝛿!"#$( 𝑜! . 𝑎!,… , 𝑜! . 𝑎 !!!"#$ !! , 𝑜! . 𝑎!,… , 𝑜! . 𝑎 !!!"#$ !! )

 

 
(2) 

such that: (i) 𝑜! . 𝑎! denotes the h-th field of the object oi (which, in turn, has been 
originally extracted from the corresponding attribute value Ah stored in a certain database 
of the DDBL layer – see Section 1); (ii) δCODL(oi, oj) : F(OSCODL) ×  F(OSCODL) → ℝ0+ is a 
distance function over the metric space induced by the set of fields of the class OSCODL, 
denoted by F(OSCODL). This metric space is the one taken as reference for the domain of 
objects of class OSCODL, as mentioned above. It is important to notice here that the set of 
|OSCODL| fields of class OSCODL are used to simultaneously cluster objects of set OICODL by 
means of algorithm A, based on the introduced distance function dCODL. Therefore, OSCODL 
fields properly play the role of clustering features [6]. We formally denote as F(OSCODL) 
the set of such features. As regards practical issues, it should be noted that clustering 
algorithm A analyzes just a sub-set of L features in F(OSCODL), such that L < |OSCODL|, in 
order to cluster objects of class OSCODL, according to well-understood clustering principles 
[6]. 

Now, focus the attention on the structure of ClustCube cubes in a greater detail. Given 
a ClustCube cube C characterized by the set of dimensions D = {d0, d1, …, dN-­‐1}, such 
that N = |OSCODL|, being dimensions in D corresponding to features in F(OSCODL), each 
ClustCube cube cell C[i0][i1]…[iN-­‐1] ≡ C[𝕀] in C, such that 0 ≤ i0 ≤ |d0|, 0 ≤ i1 ≤ |d1|, …, 0 ≤ 
iN-­‐1 ≤ |dN-­‐1|, denoting 𝕀 = 𝑖!, 𝑖!,… , 𝑖!!!  an N-dimensional entry in the N-dimensional 
space of C, C[𝕀] stores a set of clustered objects, denoted by OICODL(C[𝕀]), that are 
obtained by simultaneously clustering objects in OICODL with respect to the 
dimensions/features d0, d1, …, dN-­‐1 in D/F(OSCODL). Hence, it is trivial to observe that, for 
each ClustCube cube cell C[𝕀] in C multidimensional boundaries of C[𝕀] along the 
dimension di, denoted by 𝐵!!

!"# and 𝐵!!
!", respectively, with 𝐵!!

!"# < 𝐵!!
!", are determined by 

the A-based clustering of objects in OICODL with respect to feature di in D. In other words, 
while in traditional OLAP data cubes [3] the multidimensional boundaries of data cube 
cells along dimensions are determined by the input OLAP aggregation scheme (e.g., [1]), 
in ClustCube cubes multidimensional boundaries of ClustCube cube cells along 
dimensions are the result of the clustering process itself. 
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Figure 2. Traditional OLAP Scheme-Driven Aggregation (a) and ClustCube Clustering-Guided 
Aggregation (b) for an Example Two-Dimensional House Sale Cube 

This novelty has deep consequences even in the way cube aggregations are computed. 
To become convinced of this, consider a simple case study focused on an house sale 
dataset that logically defines a two-dimensional space characterized by the following 
dimensions (features, respectively – see Figure 2 (a)): (i) Price, which represents the price 
at which a certain house is sold; (ii) Zipcode, which represents the zipcode of the city 
where the house is located. Figure 2 (b) shows a possible clustering of such dataset with 
respect to the features (dimensions, respectively) Price and Zipcode. Figure 2 (c) shows 
instead the projection of so-obtained clusters along both the dimensions, and, finally, 
Figure 2 (d) shows the final (logical-representation) of the two-dimensional ClustCube 
cube, where blue lines denote cube cells boundaries. It should be noted that, contrary to 
traditional OLAP data cubes where tuples are aggregated according to regular and 
somewhat natural groups along dimensional hierarchies defined by the input OLAP 
aggregation scheme, thus determining regular partitions of the target data domain, in 
novel ClustCube data cubes groups of objects stored in (ClustCube) cube cells correspond 
to clusters computed by input clustering algorithm A, thus determining irregular partitions 
of the target object domain following sort of a clustering-guided ClustCube aggregation 
scheme. As shown in Figure 2 (d), given a ClustCube data cube C, every cell 
C[i0][i1]…[iN-­‐1] in C may alternatively contain either a whole cluster generated from A or 
a sub-cluster of it.  
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3   Computing ClustCube Data Cubes  

In this Section we provide details on how to compute ClustCube data cubes. One of the 
most relevant contribution of our research consists in equipping the final ClustCube cube 
generated by the CCDML layer (see Figure 1) with the canonical cubod lattice [3]. In 
traditional OLAP, given an N-dimensional data cube C having D = {d0, d1, …, dN-­‐1} as 
dimension set, the cuboid lattice associated to C, denoted by L, is a hierarchical structure 
composed by 2N – 1 cuboids, denoted by Ci, i.e. data (sub-)cubes that aggregate original 
relational data according to arbitrary combinations of dimensions in D, each one at 
different cardinality. In other words, an n-dimensional cuboid Ci of a data cube C 
represents a particular n-dimensional view of C, such that 0 ≤ n ≤ N. For n = N, the base 
cuboid is defined, which corresponds to the original data cube C. Cuboids of a certain 
cuboid lattice L are naturally ordered by means of the precedence relation ≺, such that, 
for each pair of cuboids Ci and Cj in L, Ci ≺ Cj holds iff Di ⊂ Dj, such that Di denotes 
the set of dimensions of Ci and Dj denotes the set of dimensions of Cj, respectively. This 
finally determines a cuboid hierarchy, denoted by H(L). For instance, Figure 3 shows in 
the left side the cuboid lattice L for a four-dimensional ClustCube cube C having D = {A, 
B, C, D} as dimension set. Here, for instance, the property CD ≺ BCD holds in H(L). Also, 
from Figure 3 (left side), it should be clear enough that in the cuboid lattice L of an N-
dimensional data cube C, cuboids are structurally organized according to N + 1 levels such 
that l-dimensional cuboids are located at level l of L are hierarchically linked to cuboids at 
level l	
  – 1 and l	
  + 1 of L, respectively. 

 
Figure 3. Cuboid Lattice of an Example Four-Dimensional ClustCube Cube, with Details on 
Cuboids CD and BCD 

Now, focus the attention on some important properties of the ClustCube data cube 
model with respect to the proper clustering. Figure 3 shows in the right side clustered 
objects stored by the cuboids CD and BCD, respectively. Here, it should be clear enough 
that cuboid BCD stores clusters (of objects) that are conceptually obtained from clusters of 
cuboid CD (which precedes BCD in H(L), i.e. CD ≺ BCD) by distributing objects in CD 
with respect to the newly-added dimension/feature B. In the ClustCube framework, we 
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fully take advantages from such a distributed nature of clustering across hierarchical 
cuboids, being this nice amenity the key property that allows us to significantly reduce 
computational needs due to compute ClustCube cube cuboid lattices. In fact, thanks to this 
amenity, we do not need to compute cuboids from the scratch but any cuboid Cj at level l 
of L, such that 2 ≤ l ≤ N, can be obtained from the cuboids at level l = 1, denoted by {C0, 
C1, …, CN-­‐1}, simply by simultaneously distributing objects in Ci with respect to the 
features {D0, D1, …, DN-­‐1} of {C0, C1, …, CN-­‐1}, respectively. 

Given the input class OSCODL, the collection of complex objects OICODL and the input 
clustering algorithm A, the CCDML layer computes the final ClustCube cube to be stored 
at the CCL layer (see Figure 1). To this end, ClustCube framework comprises several 
kinds of techniques for efficiently building the ClustCube cube C plus its cuboid lattice L 
(each one codified by a respective ClustCube cube building algorithm), which differ with 
respect to two orthogonal strategies, namely: (i) materialization strategy and (ii) building 
strategy. Materialization strategies specify which cuboids, among the 2N – 1 cuboids of L, 
must be materialized, i.e. computed and stored (in secondary memory). On the other hand, 
building strategies specify how cuboids are computed actually. With respect to the 
materialization strategy, the following two alternatives are introduced in the ClustCube 
framework: (i) full, denoted by FUL, according to which all cuboids of L are materialized; 
(ii) partial, denoted by PAR, according to which a sub-set of the 2N – 1 cuboids of L is 
materialized. As regards the building strategy, ClustCube framework exposes the 
following two different approaches: (i) baseline, denoted by BAS, according to which, for 
each cuboid Ci in L, clusters are re-computed from the scratch (i.e., directly from input 
objects in OICODL); (ii) drill-down, denoted by DRI, according to which cuboids at level l of 
L are computed from cuboids at level l	
  =	
  1 of L by means of a meaningfully distributive 
method. It is critical to notice here that, in the ClustCube framework, the target ClustCube 
cube C is obtained via computing the whole cuboid lattice L in terms of the base cuboid 
[3]. 

4   Conclusions and Future Work  

A complete OLAP-based framework for clustering and mining complex objects 
extracted from distributed database settings, called ClustCube, has been presented in this 
paper. ClustCube encompasses a spectrum of research innovations towards the seamless 
integration of consolidated clustering techniques over large databases and well-understood 
OLAP methodologies for accessing and mining (complex) objects according to a 
multidimensional and multi-resolution vision of the underlying object domain. Future 
work is mainly oriented towards extending the proposed framework in order to make it 
able of dealing with classification issues over complex database objects, beyond clustering 
issues like those investigated in this research. 
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