
An Extension of Datalog for Graph Queries

An Extension of Datalog for Graph Queries

M. Mazuran1 E. Serra2 C. Zaniolo3

Politecnico di Milano DEI1– mazuran@elet.polimi.it

University of Calabria DEIS2– eserra@deis.unical.it

University of California, Los Angeles UCLA3– zaniolo@cs.ucla.edu

June 26, 2012

1/20

An Extension of Datalog for Graph Queries

Outline

1 Motivations

2 DatalogFS

3 Applications

4 Computation and Opitmization

5 Conclusion and Future Work

Outline 2/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

Motivation

Motivations 3/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data”.

Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Much previous work has not produced a general solution.

DatalogFS

Motivations 4/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS

DatalogFS

DatalogFS 5/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

From Datalog to DatalogFS

Datalog

A program P is a finite set of rules.

A rule is of the form A← A1, . . . ,Am where A is the head and Ai is a body
literal (can be negated or not).

Stratified Negation.

Reachability Example
path(X, Y)← arc(X, Y)
path(X, Y)← path(X, Z), path(Z, Y).

DatalogFS

An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

It adds 2 special constructs that appear as body literals:

1 Frequency Support goal (FS goal).

2 Final-FS goal: derived from the first.

and define a new type of predicates called Multi-Occuring Predicates.

DatalogFS 6/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

DatalogFS constructs

Frequency Support goal

K : [Bexpr(X, Y)] where:

K is a positive integer variable and

Bexpr(X, Y) is a conjunction of positive literals with variables X and Y .

Example about friends that will come to the party.
willcome(X)← sure(X).
willcome(X)← 3 : [friend(X, Y), willcome(Y)].

Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X, Y) (friend(X, Y), willcome(Y)).

It is monotone and can be used in recursion.

Final-FS goal

K =![Bexpr(X, Y)]

Example about person that has exactly 10 friends:
p(X)← 10 =![friend(X, Y)].

Semantics by using FS-goal and Negation:

K : [Bexpr(X, Y)],¬K + 1 : [Bexpr(X, Y)].

It is not monotone and requires stratified negation.

DatalogFS 7/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

total ref (A) =
∑

Pno∈paper(A)

reference(Pno)

DatalogFS 8/20

An Extension of Datalog for Graph Queries

DatalogFS

Multi-occurring predicates

Multi-occurring predicates

m− predicate(x) : k

Semantics: the x value has k occurrences.

Facts Examples
ref(”Bob2012”) : 6. ref(”Bob2012”) : 4.

ref(”Bob2012”, journals) : 6. ref(”Bob2012”, others) : 4.

Rule example

ref(”Bob2012”) : 6.
tref(Author) : N← N : [author(Author, Pno), ref(Pno)].

Semantics by using Datalog.

ref(”Bob2012”, J)← lessthan(J, 6).
tref(Author, N)← N : [author(Author, Pno), ref(Pno, J)].

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)← lessthan(J, K), K > J, J1 = J + 1.

DatalogFS 8/20

An Extension of Datalog for Graph Queries

Applications

Applications

Applications

Applications 9/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X, Y) : 1← edge(X, Y)
path(X, Y) : K← K : [path(X, Z), path(Z, Y)].

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).

n path(X ,Y) =
∑

Z 6=X ,Y

n path(X ,Z)× n path(Z ,Y)

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X, Y) : 1← edge(X, Y)
path(X, Y) : K← K : [path(X, Z), path(Z, Y)].

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X, Y) : 1← edge(X, Y)
path(X, Y) : K← K : [path(X, Z), path(Z, Y)].

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X, Y) : 1← edge(X, Y)
path(X, Y) : K← K : [path(X, Z), path(Z, Y)].

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Some Examples

Example

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X, Y) : 1← edge(X, Y)
path(X, Y) : K← K : [path(X, Z), path(Z, Y)].

Example

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:

hedgeS(1, a). hedgeS(1, b). hedgeT(1, c).
node(a). node(b). node(c).

reach(X, X)← node(X).
reach(X, Y)← K : [hedgeS(ID, Z), reach(X, Z)],

hedgeT(ID, Y), K =![hedgeS(ID,)].

Bill of Material

Path of minimum and maximum cost (more probable path)

Dynamic Programming (Knapsak, Viterbi, ...)

........

Applications 10/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.

a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.

the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).
Given a graph G = 〈V ,E 〉 where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j ,i)∈E

Bj , ∀i ∈ V

a constant bc to denote how much an agent is susceptible to
make a change.
a function g denoting how much the number of neighbors
influence the change.
the percentage of neighbors that changed behavior.

Applications 11/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

coeff(X, C)← K2 =![followd(Y, X)], bc(X, V1),
g(K2, V3), C = V1 ∗ V3/K2.

b(X)← source(X).
b(X)← coeff(X, C), K ≥ 1/C, K : [followd(Y, X), b(Y)].

u1

u4

u2 u3

follo
wd

followdfollo
wd

followd

follwd(u1, u2). bc(u1, 1). g(1, 1.2).
follwd(u1, u3). bc(u2, 0.9). g(2, 2.3).
follwd(u2, u4). bc(u3, 0.5).
follwd(u3, u4). bc(u4, 1).
source(u1).

the program derives the following atoms:

coeff(u2, 1.08), coeff(u3, 0.6), coeff(u4, 1.15),
b(u1), b(u2), b(u4).

Applications 12/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

coeff(X, C)← K2 =![followd(Y, X)], bc(X, V1),
g(K2, V3), C = V1 ∗ V3/K2.

b(X)← source(X).
b(X)← coeff(X, C), K ≥ 1/C, K : [followd(Y, X), b(Y)].

u1

u4

u2 u3

follo
wd

followdfollo
wd

followd

follwd(u1, u2). bc(u1, 1). g(1, 1.2).
follwd(u1, u3). bc(u2, 0.9). g(2, 2.3).
follwd(u2, u4). bc(u3, 0.5).
follwd(u3, u4). bc(u4, 1).
source(u1).

the program derives the following atoms:

coeff(u2, 1.08), coeff(u3, 0.6), coeff(u4, 1.15),
b(u1), b(u2), b(u4).

Applications 12/20

An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

coeff(X, C)← K2 =![followd(Y, X)], bc(X, V1),
g(K2, V3), C = V1 ∗ V3/K2.

b(X)← source(X).
b(X)← coeff(X, C), K ≥ 1/C, K : [followd(Y, X), b(Y)].

u1

u4

u2 u3

follo
wd

followdfollo
wd

followd

follwd(u1, u2). bc(u1, 1). g(1, 1.2).
follwd(u1, u3). bc(u2, 0.9). g(2, 2.3).
follwd(u2, u4). bc(u3, 0.5).
follwd(u3, u4). bc(u4, 1).
source(u1).

the program derives the following atoms:

coeff(u2, 1.08), coeff(u3, 0.6), coeff(u4, 1.15),
b(u1), b(u2), b(u4).

Applications 12/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states
The process starts in one state and then moves from one state
to another
Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step
Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P
Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states

The process starts in one state and then moves from one state
to another
Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step
Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P
Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states
The process starts in one state and then moves from one state
to another

Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step
Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P
Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states
The process starts in one state and then moves from one state
to another
Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step

Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P
Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states
The process starts in one state and then moves from one state
to another
Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step
Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P

Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

A process that consists of a finite number of states
The process starts in one state and then moves from one state
to another
Represented by the transition matrix W of s × s components
where wij is the probability to go from state i to state j in one
step
Given P a vector of stabilized probabilities of cardinality s

then for each component we have:

pi =
s∑

j=1

wji · pj

this is the equilibrium condition expressed by the fixpoint
equation:

P = W · P
Used for Page Rank.

Applications 13/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

a b

c

1.0

1.0

0.5

0.5

p st(X) : K← K : [p st(Y), w mat(Y, X)].

w mat(a, b) : 1.0.
w mat(b, a) : 0.5.
w mat(b, c) : 0.5.
w mat(c, b) : 1.0.
p st(a). p st(b). p st(c).

where:

p st(X) : K means the probability of staying in state X is K

w mat(Y, X) : W means the arc from Y to X has weight W

p st(a) : 0.25. p st(b) : 0.5. p st(c) : 0.25.

Applications 14/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

a b

c

1.0

1.0

0.5

0.5

p st(X) : K← K : [p st(Y), w mat(Y, X)].

w mat(a, b) : 1.0.
w mat(b, a) : 0.5.
w mat(b, c) : 0.5.
w mat(c, b) : 1.0.
p st(a). p st(b). p st(c).

where:

p st(X) : K means the probability of staying in state X is K

w mat(Y, X) : W means the arc from Y to X has weight W

p st(a) : 0.25. p st(b) : 0.5. p st(c) : 0.25.

Applications 14/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

a b

c

1.0

1.0

0.5

0.5

p st(X) : K← K : [p st(Y), w mat(Y, X)].

w mat(a, b) : 1.0.
w mat(b, a) : 0.5.
w mat(b, c) : 0.5.
w mat(c, b) : 1.0.
p st(a). p st(b). p st(c).

where:

p st(X) : K means the probability of staying in state X is K

w mat(Y, X) : W means the arc from Y to X has weight W

p st(a) : 0.25. p st(b) : 0.5. p st(c) : 0.25.

Applications 14/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

a b

c

1.0

1.0

0.5

0.5

p st(X) : K← K : [p st(Y), w mat(Y, X)].

w mat(a, b) : 1.0.
w mat(b, a) : 0.5.
w mat(b, c) : 0.5.
w mat(c, b) : 1.0.
p st(a). p st(b). p st(c).

where:

p st(X) : K means the probability of staying in state X is K

w mat(Y, X) : W means the arc from Y to X has weight W

p st(a) : 0.25. p st(b) : 0.5. p st(c) : 0.25.

Applications 14/20

An Extension of Datalog for Graph Queries

Applications

Markov chains

a b

c

1.0

1.0

0.5

0.5

p st(X) : K← K : [p st(Y), w mat(Y, X)].

w mat(a, b) : 1.0.
w mat(b, a) : 0.5.
w mat(b, c) : 0.5.
w mat(c, b) : 1.0.
p st(a). p st(b). p st(c).

where:

p st(X) : K means the probability of staying in state X is K

w mat(Y, X) : W means the arc from Y to X has weight W

p st(a) : 0.25. p st(b) : 0.5. p st(c) : 0.25.

Applications 14/20

An Extension of Datalog for Graph Queries

Computation and Opitmization

Computation and Opitmization

Computation and Opitmization

Computation and Opitmization 15/20

An Extension of Datalog for Graph Queries

Computation and Opitmization

Computation and Opitmization

Frequency Support Goal is monotone

Fixpoint Algorithm for positive programs.
Differential Fixpoint.
Magic Set.

Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20

An Extension of Datalog for Graph Queries

Computation and Opitmization

Computation and Opitmization

Frequency Support Goal is monotone

Fixpoint Algorithm for positive programs.
Differential Fixpoint.
Magic Set.

Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20

An Extension of Datalog for Graph Queries

Computation and Opitmization

Computation and Opitmization

Frequency Support Goal is monotone

Fixpoint Algorithm for positive programs.
Differential Fixpoint.
Magic Set.

Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20

An Extension of Datalog for Graph Queries

Computation and Opitmization

Computation and Opitmization

Frequency Support Goal is monotone

Fixpoint Algorithm for positive programs.
Differential Fixpoint.
Magic Set.

Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work 17/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.
Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.
Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.
Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.

Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.
Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Conclusion and Future Work

Conclusion

We proposed a simple extension of Datalog, called DatalogFS ,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

DatalogFS is more expressive then of stratified Datalog and
stratified Aggregates.
It allows the recursion with aggregate (FS goal).

There are a lot of problems that can be solved by DatalogFS

with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

DatalogFS uses the same efficient optimization used for
Datalog.
Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog’s performances.

DatalogFS and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20

An Extension of Datalog for Graph Queries

Thank you!
Any question?

19/20

An Extension of Datalog for Graph Queries

Compact way

Compact way of expressing counting goals:

in DatalogFS

sixsubs(X)← detective(X), 6 : [superior(X, Y)].

in Datalog

sixsubs(X)← detective(X), superior(X, Y1),
superior(X, Y2), superior(X, Y3),
superior(X, Y4), superior(X, Y5),
superior(X, Y6), Y1 6= Y2, Y1 6= Y3,
Y1 6= Y4, Y1 6= Y5, Y1 6= Y6, Y2 6= Y3,
Y2 6= Y4, Y2 6= Y5, Y2 6= Y6, Y3 6= Y4,
Y3 6= Y5, Y3 6= Y6, Y4 6= Y5, Y4 6= Y6,
Y5 6= Y6.

20/20

	Motivations

