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@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

@ It adds 2 special constructs that appear as body literals:
@ Frequency Support goal (FS goal).
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p(X) « 10 =![friend(X,Y)].
@ Semantics by using FS-goal and Negation:
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@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

e Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

B; = bc; x g(I' *—*Z i, VieV

@ a constant bc to denote how much an agent is susceptible to
make a change.

@ a function g denoting how much the number of neighbors
influence the change.

@ the percentage of neighbors that changed behavior.
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coeff(X,C) + K2 =![followd(Y,X)],bc(X, V1),
g(K2,V3),C = V1 % V3/K2.

b(X) < source(X).

b(X) + coeff(X,C),K > 1/C,K : [followd(Y, X), b(Y)].

source(uy).

follwd(ui,uz).
follwd(ui,us).
follwd(uz,us).
follwd(us,ua).

bc(ug,1). g(1,1.2).
bc(ug, 0.9). g(2,2.3).
bc(us, 0.5).

bc(ua, 1).
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coeff(X,C) + K2 =![followd(Y,X)],bc(X, V1),
g(K2,V3),C = V1 % V3/K2.
b(X) < source(X).
b(X) + coef£(X,C),K > 1/C,K : [followd(Y, X),b(Y)].

follwd(ui,uz). bec(ug,1). g(1,1.2).
follwd(ui,us). bc(uz,0.9). g(2,2.3).
follwd(uz,us). bc(us,0.5).
follwd(us,us). bc(ug,1).
source(uy).

the program derives the following atoms:

coeff(up,1.08), coeff(us, 0.6), coeff(us,1.15),
b(u1), b(uz), b(ua).
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@ Represented by the transition matrix W of s X s components
where w;; is the probability to go from state / to state j in one
step

@ Given P a vector of stabilized probabilities of cardinality s
then for each component we have:

S
pi=Y_ W pj
=1

this is the equilibrium condition expressed by the fixpoint
equation:
P=WwW-P
@ Used for Page Rank.
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Markov chains

where:
e p_st(X) : K means the probability of staying in state X is K
e wmat(Y,X) : W means the arc from Y to X has weight W

p-st(a) : 0.25. p_st(b):0.5. p_st(c):0.25. J
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Computation and Opitmization

@ Frequency Support Goal is monotone
e Fixpoint Algorithm for positive programs.
e Differential Fixpoint.
e Magic Set.
@ Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

@ Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20
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o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

@ There are a lot of problems that can be solved by Datalog/
with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

o Datalog™ uses the same efficient optimization used for
Datalog.

@ Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog's performances.

o Datalog™ and in particular the multiplicity predicates can be
also combined with such technologies.
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Compact way

Compact way of expressing counting goals:

e in Datalog"®

sixsubs(X) « detective(X),6 : [superior(X,Y)].

e in Datalog
sixsubs(X) < detective(X), superior(X, Y1),

superior(X,Y2), superior(X,Y3),
superior(X,Y4), superior(X, Y5),
superior(X, Y6),Y1 # Y2, Y1 # Y3,
Y1 #£ Y4,Y1 # Y5,Y1 # Y6, Y2 +# Y3,
Y2 £ Y4,Y2 # Y5,Y2 # Y6,Y3 # Y4,
Y3 £ Y5,Y3 # Y6, Y4 £ Y5, Y4 # Y6,
Y5 # Y6.
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