An Extension of Datalog for Graph Queries

An Extension of Datalog for Graph Queries

M. Mazuran! E. Serra? C. Zaniolo3

Politecnico di Milano DEI'- mazuran@elet.polimi.it
University of Calabria DEIS?— eserra@deis.unical.it
University of California, Los Angeles UCLA3- zaniolo@cs.ucla.edu

June 26, 2012

1/20



An Extension of Datalog for Graph Queries
Outline

© Motivations

@ Datalog™

e Applications

@ Computation and Opitmization

@ Conclusion and Future Work

Outline 2/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

Motivation

Motivations 3/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

@ A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

@ A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

o Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

@ A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

o Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

@ There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

@ A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

o Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

@ There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

@ Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

o Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

@ There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

@ Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

@ Much previous work has not produced a general solution.

Motivations 4/20



An Extension of Datalog for Graph Queries
Motivations

Motivation

A resurgence of interest in Datalog in many research areas—in
particular “Big Data".

o Parallel fixpoint-based computation of recursive predicates
dovetails with MapReduce framework [Afrati et al.]

@ There are several limitation due to the fact that aggregates
cannot be allowed in recursive definitions since they are
non-monotone.

@ Most systems only support aggregates outside recursion, i.e.,
in programs that are stratified w.r.t. aggregates and negation.

@ Much previous work has not produced a general solution.

Datalog™ J

Motivations 4/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™

Datalog™

Datalogr 5/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

v

Datalogr®

Datalogr 6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

v

Datalogr®

Datalogr 6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

v

Datalog/®

Datalogr 6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.

v

Datalog/®

Datalogr 6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

Datalogr 6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

DatalogFS

6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

@ It adds 2 special constructs that appear as body literals:

DatalogFS

6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

@ It adds 2 special constructs that appear as body literals:

@ Frequency Support goal (FS goal).

A

DatalogFS

6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

@ It adds 2 special constructs that appear as body literals:

@ Frequency Support goal (FS goal).
@ Final-FS goal: derived from the first.

A

DatalogFS

6/20



An Extension of Datalog for Graph Queries
DatalogFS

From Datalog to Datalog™

@ A program P is a finite set of rules.

@ A rule is of the form A + Ai,...,Am where A is the head and A; is a body
literal (can be negated or not).

@ Stratified Negation.
@ Reachability Example
path(X,Y) « arc(X,Y)
path(X,Y) + path(X,Z),path(Z,Y).

v

Datalog/®

@ An extended Datalog that allows reasoning about the number of distinct
occurrences satisfying a conjunction of goals

@ It adds 2 special constructs that appear as body literals:
@ Frequency Support goal (FS goal).
@ Final-FS goal: derived from the first.

@ and define a new type of predicates called Multi-Occuring Predicates.

A

DatalogFS

6/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

V.

Final-FS goal

DatalogFS 7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

V.

Final-FS goal

DatalogFS 7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].

V.

Final-FS goal

Datalogr 7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].

@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

V.

Final-FS goal

DatalogFS

7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].

@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

@ It is monotone and can be used in recursion. )

Final-FS goal

DatalogFS

7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].

@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

@ It is monotone and can be used in recursion. )

Final-FS goal

@ X =![Bexpr(X,Y)]

Datalogr 7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.

@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].
@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

@ It is monotone and can be used in recursion. )

Final-FS goal
@ X =![Bexpr(X,Y)]

@ Example about person that has exactly 10 friends:
p(X) « 10 =![friend(X,Y)].

Datalogr 7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.
@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].
@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

@ It is monotone and can be used in recursion. )

@ X =![Bexpr(X,Y)]
@ Example about person that has exactly 10 friends:
p(X) « 10 =![friend(X,Y)].
@ Semantics by using FS-goal and Negation:
K : [Bexpr(X,Y)], K + 1 : [Bexpr(X,Y)].

DatalogFS

7/20



An Extension of Datalog for Graph Queries
DatalogFS

Datalog™™ constructs

Frequency Support goal

@ K: [Bexpr(X,Y)] where:

@ K is a positive integer variable and
@ Bexpr(X,Y) is a conjunction of positive literals with variables X and Y.
@ Example about friends that will come to the party.
willcome(X) < sure(X).
willcome(X) + 3:[friend(X,Y),willcome(Y)].
@ Semantics: there exist at least K assignments of variables Y that satisfy the
conjunction Bexpr(X,Y) (friend(X,Y),willcome(Y)).

@ It is monotone and can be used in recursion. )

@ X =![Bexpr(X,Y)]
@ Example about person that has exactly 10 friends:
p(X) « 10 =![friend(X,Y)].
@ Semantics by using FS-goal and Negation:
K : [Bexpr(X,Y)], K + 1 : [Bexpr(X,Y)].
@ It is not monotone and requires stratified negation.

DatalogFS

7/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

Datalogr 8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

@ m— predicate(x) : k

Datalogr 8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

@ m— predicate(x) : k

@ Semantics: the x value has k occurrences.

Datalogr 8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

@ m— predicate(x) : k
@ Semantics: the x value has k occurrences.

@ Facts Examples
ref("Bob2012") : 6. ref("Bob2012") : 4.
ref("Bob2012", journals) : 6. ref("Bob2012", others) : 4.

Datalogr 8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

@ m— predicate(x) : k
@ Semantics: the x value has k occurrences.
@ Facts Examples
ref("Bob2012") : 6. ref("Bob2012") : 4.
ref("Bob2012", journals) : 6. ref("Bob2012", others) : 4.

@ Rule example

ref("Bob2012") : 6.

tref(Author) : N+ N : [author(Author, Pno), ref(Pno)].

Datalogr 8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates
@ m — predicate(x) : k
@ Semantics: the x value has k occurrences.
@ Facts Examples
ref("Bob2012") : 6. ref("Bob2012") : 4.
ref("Bob2012", journals) : 6. ref("Bob2012", others) : 4.

@ Rule example

ref("Bob2012") : 6.

tref(Author) : N <~ N : [author(Author,Pno), ref(Pno)].

total_ref (A) = Z reference(Pno)
Pno€ paper(A)

DatalogFS

8/20



An Extension of Datalog for Graph Queries
DatalogFS

Multi-occurring predicates

Multi-occurring predicates

@ m— predicate(x) : k
@ Semantics: the x value has k occurrences.

@ Facts Examples
ref("Bob2012") : 6. ref("Bob2012") : 4.
ref("Bob2012", journals) : 6. ref("Bob2012", others) : 4.
@ Rule example
ref("Bob2012") : 6.
tref(Author) : N+ N : [author(Author, Pno), ref(Pno)].

@ Semantics by using Datalog.

ref("Bob2012",J) + lessthan(J,6).
tref(Author, N) <+ N : [author(Author, Pno), ref(Pno, J)].

lessthan(1,K) < K> 1.
lessthan(J1,K) « lessthan(J,K),K > J,J1 =J + 1.

Datalogr 8/20



An Extension of Datalog for Graph Queries
Applications

Applications

Applications

Applications 9/20



An Extension of Datalog for Graph Queries
Applications

Some Examples

Applications 10/20



An Extension of Datalog for Graph Queries
Applications

Some Examples

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X,Y) : 1 + edge(X,Y)
path(X,Y) : K < K:[path(X,Z), path(Z,Y)].

Applications 10/20



An Extension of Datalog for Graph Queries
Applications

Some Examples

ne ' - A . f . —~ oA o~ TEA NP

n-path(X,Y) = > n_path(X,Z) x n_path(Z,Y)
Z#X,Y

Applications 10/20



An Extension of Datalog for Graph Queries
Applications

Some Examples

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X,Y) : 1 < edge(X,Y)
path(X,Y) : K + K:[path(X, Z), path(Z, Y)].

o’

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:
hedgeS(1,a). hedgeS(1,b). hedgeT(1,c).
node(a). node(b). node(c).
reach(X,X) < node(X).
reach(X,Y) + K: [hedgeS(ID, Z), reach(X, Z)],
hedgeT(ID, Y),K =![hedgeS(ID, _)].

Applications 10/20



An Extension of Datalog for Graph Queries
Applications

Some Examples

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X,Y) : 1 + edge(X,Y)
path(X,Y) : K + K:[path(X, Z), path(Z, Y)].

o’

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:
hedgeS(1,a). hedgeS(1,b). hedgeT(1,c).
node(a). node(b). node(c).
reach(X,X) < node(X).
reach(X,Y) + K: [hedgeS(ID, Z), reach(X, Z)],
hedgeT(ID, Y),K =![hedgeS(ID, _)].

@ Bill of Material

N

Applications 10/20



An Extension of Datalog for Graph Queries

Applications

Some Examples

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X,Y) : 1 + edge(X,Y)
path(X,Y) : K + K:[path(X, Z), path(Z, Y)].

o’

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:
hedgeS(1,a). hedgeS(1,b). hedgeT(1,c).
node(a). node(b). node(c).
reach(X,X) < node(X).
reach(X,Y) + K: [hedgeS(ID, Z), reach(X, Z)],
hedgeT(ID, Y),K =![hedgeS(ID, _)].

@ Bill of Material

@ Path of minimum and maximum cost (more probable path)

N

Applications

10/20



An Extension of Datalog for Graph Queries

Applications

Some Examples

Number of paths between two nodes in a Direct Acyclic Graph (DAG).
path(X,Y) : 1 + edge(X,Y)
path(X,Y) : K + K:[path(X, Z), path(Z, Y)].

o’

Reachability in a directed hyper graph.
A hyperedge ({a, b}, c) is represented by the following facts:
hedgeS(1,a). hedgeS(1,b). hedgeT(1,c).
node(a). node(b). node(c).
reach(X,X) < node(X).
reach(X,Y) + K: [hedgeS(ID, Z), reach(X, Z)],
hedgeT(ID, Y),K =![hedgeS(ID, _)].

@ Bill of Material
@ Path of minimum and maximum cost (more probable path)

@ Dynamic Programming (Knapsak, Viterbi, ...)

N

Applications

10/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

Applications 11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

Applications 11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

e Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

Applications 11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

e Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

B; = bc; x g(I' *—*Z i, VieV

Applications 11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

e Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

B; = bc; x g(I' *—*Z i, VieV

@ a constant bc to denote how much an agent is susceptible to
make a change.

Applications 11/20



An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

B; = bc; x g(I' *—*Z i, VieV

Applications

a constant bc to denote how much an agent is susceptible to
make a change.

a function g denoting how much the number of neighbors
influence the change.

11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

@ Models how social structures influence the spread of behavior
and trends in social networks (diffusion of innovations,
behaviors, information and political movements).

e Given a graph G = (V, E) where V are agents and E are
edges denoting their relationships, each agent has a default
behavior A and decides on whether to adopt a new behavior B
based on:

B; = bc; x g(I' *—*Z i, VieV

@ a constant bc to denote how much an agent is susceptible to
make a change.

@ a function g denoting how much the number of neighbors
influence the change.

@ the percentage of neighbors that changed behavior.
Applications 11/20



An Extension of Datalog for Graph Queries
Applications

Jackson-Yariv Diffusion Model

Applications 12/20



An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

coeff(X,C) + K2 =![followd(Y,X)],bc(X, V1),
g(K2,V3),C = V1 % V3/K2.

b(X) < source(X).

b(X) + coeff(X,C),K > 1/C,K : [followd(Y, X), b(Y)].

source(uy).

follwd(ui,uz).
follwd(ui,us).
follwd(uz,us).
follwd(us,ua).

bc(ug,1). g(1,1.2).
bc(ug, 0.9). g(2,2.3).
bc(us, 0.5).

bc(ua, 1).

Applications

12/20



An Extension of Datalog for Graph Queries

Applications

Jackson-Yariv Diffusion Model

coeff(X,C) + K2 =![followd(Y,X)],bc(X, V1),
g(K2,V3),C = V1 % V3/K2.
b(X) < source(X).
b(X) + coef£(X,C),K > 1/C,K : [followd(Y, X),b(Y)].

follwd(ui,uz). bec(ug,1). g(1,1.2).
follwd(ui,us). bc(uz,0.9). g(2,2.3).
follwd(uz,us). bc(us,0.5).
follwd(us,us). bc(ug,1).
source(uy).

the program derives the following atoms:

coeff(up,1.08), coeff(us, 0.6), coeff(us,1.15),
b(u1), b(uz), b(ua).

Applications 12/20




An Extension of Datalog for Graph Queries
Applications

Markov chains

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

@ A process that consists of a finite number of states

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

@ A process that consists of a finite number of states
@ The process starts in one state and then moves from one state
to another

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

@ A process that consists of a finite number of states

@ The process starts in one state and then moves from one state
to another

@ Represented by the transition matrix W of s X s components
where w;; is the probability to go from state / to state j in one
step

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

@ A process that consists of a finite number of states

@ The process starts in one state and then moves from one state
to another

@ Represented by the transition matrix W of s X s components
where w;; is the probability to go from state / to state j in one
step

@ Given P a vector of stabilized probabilities of cardinality s
then for each component we have:

S
pi=Y_ W pj
=1

this is the equilibrium condition expressed by the fixpoint
equation:
P=WwW-P

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

@ A process that consists of a finite number of states

@ The process starts in one state and then moves from one state
to another

@ Represented by the transition matrix W of s X s components
where w;; is the probability to go from state / to state j in one
step

@ Given P a vector of stabilized probabilities of cardinality s
then for each component we have:

S
pi=Y_ W pj
=1

this is the equilibrium condition expressed by the fixpoint
equation:
P=WwW-P
@ Used for Page Rank.

Applications 13/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

Applications 14/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

where:

Applications 14/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

where:

e p_st(X) : K means the probability of staying in state X is K

Applications 14/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

where:

e p_st(X) : K means the probability of staying in state X is K

e wmat(Y,X) : W means the arc from Y to X has weight W

Applications 14/20



An Extension of Datalog for Graph Queries
Applications

Markov chains

where:
e p_st(X) : K means the probability of staying in state X is K
e wmat(Y,X) : W means the arc from Y to X has weight W

p-st(a) : 0.25. p_st(b):0.5. p_st(c):0.25. J

Applications 14/20



An Extension of Datalog for Graph Queries
Computation and Opitmization

Computation and Opitmization

Computation and Opitmization

Computation and Opitmization 15/20



An Extension of Datalog for Graph Queries
Computation and Opitmization

Computation and Opitmization

Computation and Opitmization 16/20



An Extension of Datalog for Graph Queries
Computation and Opitmization

Computation and Opitmization

@ Frequency Support Goal is monotone

e Fixpoint Algorithm for positive programs.
e Differential Fixpoint.
e Magic Set.

Computation and Opitmization 16/20



An Extension of Datalog for Graph Queries
Computation and Opitmization

Computation and Opitmization

@ Frequency Support Goal is monotone
e Fixpoint Algorithm for positive programs.
e Differential Fixpoint.
e Magic Set.
@ Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

Computation and Opitmization 16/20



An Extension of Datalog for Graph Queries
Computation and Opitmization

Computation and Opitmization

@ Frequency Support Goal is monotone
e Fixpoint Algorithm for positive programs.
e Differential Fixpoint.
e Magic Set.
@ Final-FS goal: its semantics is defined by using the negation.
The stratified fixpoint for programs with stratified negation is
used.

@ Multiplicity predicate: we only store the maximum value of
multiplicity.

Computation and Opitmization 16/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work

Conclusion and Future Work 17/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

@ There are a lot of problems that can be solved by Datalog/
with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

@ There are a lot of problems that can be solved by Datalog/
with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

o Datalog™ uses the same efficient optimization used for
Datalog.

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

@ There are a lot of problems that can be solved by Datalog/
with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

o Datalog™ uses the same efficient optimization used for
Datalog.

@ Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog's performances.

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries
Conclusion and Future Work

Conclusion

@ We proposed a simple extension of Datalog, called Datalog’,
with two new constructs (FS goal and Final-FS goal) and a
new type of predicate (Multiplicity predicate).

o Datalog” is more expressive then of stratified Datalog and
stratified Aggregates.

It allows the recursion with aggregate (FS goal).

@ There are a lot of problems that can be solved by Datalog/
with a simple and compact definition: Reachability Hyper
Graph, Path of Minimum Cost, Diffusion Model, Page Rank ...

o Datalog™ uses the same efficient optimization used for
Datalog.

@ Recent works show how it is possible to use parallel paradigms
(Map Reduce) to improve Datalog's performances.

o Datalog™ and in particular the multiplicity predicates can be
also combined with such technologies.

Conclusion and Future Work 18/20



An Extension of Datalog for Graph Queries

Thank you!
Any question?

19/20



An Extension of Datalog for Graph Queries

Compact way

Compact way of expressing counting goals:

e in Datalog"®

sixsubs(X) « detective(X),6 : [superior(X,Y)].

e in Datalog
sixsubs(X) < detective(X), superior(X, Y1),

superior(X,Y2), superior(X,Y3),
superior(X,Y4), superior(X, Y5),
superior(X, Y6),Y1 # Y2, Y1 # Y3,
Y1 #£ Y4,Y1 # Y5,Y1 # Y6, Y2 +# Y3,
Y2 £ Y4,Y2 # Y5,Y2 # Y6,Y3 # Y4,
Y3 £ Y5,Y3 # Y6, Y4 £ Y5, Y4 # Y6,
Y5 # Y6.

20/20



	Motivations

