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Abstract. A classical problem in database theory is to verify whether there exists
a relation (or database) instance satisfying a number of given dependency con-
straints but the issue of handling constraints on aggregate data has not been much
investigated so far. This paper introduces a new type of data dependency, called
count constraint, that requires the results of given count operations on a relation
to be within a certain range. Count constraints are defined by a suitable extension
of first order predicate calculus, based on set terms, and they are then used in a
new decisional problem, the Inverse OLAP: given a fact table, does there exist an
instance satisfying a set of given count constraints? Count constraints can also be
used into a data exchange system context, where data from the source database
are transferred to the target database using aggregate operations.
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1 Introduction

A typical problem in relational database theory is to decide the existence of a database
satisfying a given set of given integrity constraints. Classical approaches mainly fo-
cus on inclusion dependencies and functional dependencies [2–4]. This problem has
recently received a renewed deal of interest within the context of data exchange [5–7],
but the issue of handling constraints on aggregate data has not been much investigated
so far, notwithstanding the relevance of aggregate operations in many applications.

In this paper we consider a new type of data dependencies, called count constraint,
prescribing the results of given count operations on a relation to be within a certain
ranges. Count constraints are relevant in OLAP analysis, which is characterized by
multidimensional data cubes that enable manipulation and analysis of data stored in
a source database from multiple perspectives in a fast way [8, 9]. In this paper we apply
count constraints to a fact table, that is a relation scheme whose attributes are dimen-
sions (i.e., properties, possibly structured at various levels of abstraction) and measures
(i.e., values computed on the basis of some aggregation operations, e.g., count). A fact
table is part of a star schema that typically includes also dimension tables describing
dimension attributes.
⋆ This paper is an extended abstract of [1]

? This paper is an extended abstract of [1].
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To get an intuition of our approach, consider a fact tableR(T, I)with two attributes
T (the ID of a transaction) and I (the ID of an item) with domain I, stored in a relation
DI . Given a relation r onR, G = Group(r)By(T ) divides r into a number of groups,
one for each transaction ID. We want to express the following constraints: every item
may occur in at most 1000 transactions, the itemset i = {a, b, c} must occur as a trans-
action group at least 100 and at most 200 times, whereas every other set s of items
cannot be present as a sub-group of more than 10 transactions, except for all subsets of
i (including i) that have no limits. Such conditions can be formulated by the following
count constraints, expressed with a logic formalism that extends the one adopted in the
data exchange setting [5–7] – note that we write below i to represent the constant set
term:

∀I ( DI(I) → 0 ≤ #({T : R(T, I)}) ≤ 1000 ); (1)
∀s ( s = i → 100 ≤ #({T : s = {I : R(T, I)}}) ≤ 200 ); (2)
∀s ( s ⊆ {I : DI(I)} ∧ s 6⊆ i → 0 ≤ #({T : s ⊆ {I : R(T, I)}}) ≤ 10 ). (3)
Count constraints represents an extension of cardinality constraints that have been

first introduced in the context of the entity-relationship model and have recently re-
ceived a renewed interest. A declarative format to express them has been recently pro-
posed in [10] with the aim of formulating more general characteristics in the process
of data generation. Cardinality constraints have been also introduced within the for-
malism of logic programs by [11, 12]. Observe that, while constraint (1) can be easily
expressed as a cardinality constraint, the other two cannot as they involve sets generated
by complex grouping operations.

We use count constraints to define a new decisional problem, the Inverse OLAP:
given a star schema consisting of one fact table, does there exist a relation instance
satisfying a set of given count constraints? This problem extends the Inverse Frequent
itemset Mining problem (IFM for short) [13–15] and has a potential high relevance in
the contexts of generating synthetic data cubes having the same characteristics of real-
world ones in terms of aggregation patterns and of privacy-preserving aggregate data
exchange.

In[16, 1] we proved that the new problem is NEXP-complete under various con-
ditions: data complexity (i.e, the number of attributes and the size of constraints are
constant), program complexity (i.e, the domains are constant) and combined complex-
ity. It is interesting to point out that the NEXP-complete results on the complexity of
cardinality constraints have been detected both in [10] and in [12].

In the paper, we illustrate how count constraints can be also used in the context
of data exchange. Traditionally the mapping of the data from the source to the target
schema is defined by source- to-target TGDs (Tuple Generating Dependencies) and ad-
ditional constraints on the target schema are specified in form of EGDs (Equality Gen-
erating Dependencies) and TGDs. We show that count constraints represent a powerful
extension of EGDs.

The paper is organized as follows. In Section 2 we present the logic language for
describing count constraints, introduce the inverse OLAP problem and discuss its com-
plexity. We illustrate the usage of count constraints and the relevance of inverse OLAP
in a motivating example in Section 3. In Section 4 we show how count constraints can be
used into a data exchange system context. Finally in Section 5 we draw the conclusion
and discuss further work.
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2 Count Constraints
Let U = (A1, . . . , An) be a list of n distinct attributes on the domainsD1, . . . , Dn with
given cardinalities d1, . . . , dn. A relation scheme is a pair consisting of a relation name
and a list of attributes. In this paper we shall only deal with exactly one relation scheme
containing all attributes in U , say R(A1, . . . , An). We also assume that the domains
of the attributes D1, . . . , Dn are stored in suitable tables of mono-attribute relation
schemes — we denote their relation schemes by D1(A1), . . . ,Dn(An). A relation on
R (also called an instance ofR) is any table on U .

R represents a star schema consisting of a unique fact table whose attributes rep-
resent dimensions - as we are only interested in count aggregation, we omit to include
measures. Some of the dimensions could be organized in layers defined by Functional
Dependencies (FDs) — for instance the FDs A → B and B → C state that the values
of dimensionA are grouped at a first levelB and at a second levelC. In correspondence
of FDs we may have additional domain relations (usually called dimension tables) de-
scribing hierarchies among two dimensions, e.g., DA,B andDB,C .

We next introduce an extension of first order predicate calculus to define count
constraints on the instances of R. The predicate symbols are: R, the domain relation
schemes D1, . . . ,Dn and possible dimension hierarchy domains. The constants of the
language are the domain values (domain constants) and all (non-negative) integers.

Besides to domain constants, the Herbrand universe includes constant set terms – a
set term represents a set of tuples having arity bound by some constant k. For instance,
given the attributes A and B with domains {a1, a2, a3} and {b1, b2} respectively, ex-
amples of constant set terms on {A,B} are {[a1, b1], [a2, b1], [a3, b2]} and {[a2, b1]},
while {[a1], [a3]} and {[a2]} are two constant set terms on {A}.

A non-constant set term is defined as {x1, . . . , xs : α}, where x1, . . . , xs are vari-
ables and α is a count formula (defined next), in which x1, . . . , xs occur as free vari-
ables (similar notation for set terms and aggregate predicates has been used in the dlv
system [11]). There is an interpreted function symbol count (denoted by#) that can be
applied to a set term T to return the number of tuples in T (i.e., the cardinality of the
table represented by T ).

Our language is equipped with a countable number of variables and makes use of
the following types of terms: (i) simple term (either a domain constant or a variable), (ii)
set term (either a constant set term or a formula term) and (iii) an integer term (either
an integer or a count function term).

An atom can be: (i) a relation predicate, (ii) a domain predicate or (iii) a comparison
predicate (equality or disequality of two terms, comparison of two integer terms, and
inclusion of two set terms).

A count constraint C is a formula of one of the following two types:

1. ∀X ( φ(X) → βmin ≤ #({ Y : ∃Z ψ(X,Y,Z) }) ≤ βmax ) (tuple count
constraint), or

2. ∀X ( φ(X) → βmin ≤ #( {W : t ∗ {Y : ∃Z ψ(X,Y,Z,W) } }) ≤ βmax )
(group count constraint),

where X, Y, Z and W are disjunct lists of variables (X and Z can be empty), φ is a
(possibly empty) conjunction of domain and comparison predicates, ψ is a conjunction
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of relation and comparison predicates, βmin and βmax are integers for which βmin ≤
βmax, the operator ∗ can be either= or one of the two subset operators, strict inclusion
(⊂) or possibly improper inclusion (⊆), the term t is either a constant set term or a
variable inX that is bound to a set term in φ. Rule (1) of the example in the Introduction
is a tuple count constraint while rules (2) and (3) are group count constraints. The formal
semantics of count constraints is described in [1].

A relation r satisfies a count constraint C (and we write r |= C) if the evaluation
of C on r is equal to true. Accordingly, r satisfies a set of count constraintsC (and we
write r |= C) if for each C ∈ C, r |= C.

As stated in the proposition below, checking count constraint satisfaction may re-
quire exponential time. For space reasons the proof is omitted and can be found in [1]
and [16].

Proposition 1. Given a count constraint C and a relation r on R, deciding r |= C is
in EXP.

Particularly interesting are count constraints for which satisfaction can be tested in
polynomial time.

Inverse OLAP Problem. Given a set of count constraints C on R, the Inverse OLAP
problem consists of deciding whether there exists a relation r onR such that r |= C.

Proposition 2. The Inverse OLAP problem is NEXP-complete.

The proof is reported in [1] and [16].We point out that, in our general setting, we are
considering the so-called ”combined complexity” [17]: both the number of attributes,
the size of constraints and the domain sizes are not fixed and are part of the input.
The ”program complexity” version of the problem consists of considering domain sizes
as constants. On the other hand, the ”data complexity” version of the inverse OLAP
problem fixes the number of attributes and the size of constraints and considers domain
sizes as the only problem input. TheNEXP-completeness of Inverse OLAP under com-
bined complexity is not surprising: in fact, even the simple evaluation of single clause
DATALOG programs is known to be EXP-complete [18]. What is really surprising is
that inverse OLAP is NEXP-complete also under data complexity. This result depends
mainly on group count constraints, that introduce the typical high complexity of data
mining problems.

3 A Motivating Example

We refer to a classical example of point-of-sales transaction star schema. The attributes
of U are: T (Transaction), I (Item), B (Brand), S (Store),A (Area) — their (finite) do-
mains can be suitably defined. We are also given the following functional dependencies
(FDs): T → S, S → A. It turns out that {T, I, B} is the relation key. The domains of
the attributes are denoted by DT , DI and so on. We next present a number of meaning-
ful count constraints that clarify their usage. To simplify the notation, all low-case letter
variables are intended to be universally quantified.
(i): Enforcing FDs and relation key

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia 
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



Count Constraints for Inverse OLAP and Aggregate Data Exchange 31

For instance the FD T → S can be expressed as follows:
DT(t) → 0 ≤ #({S : ∃I, B, AR(t, I, B, S, A)}) ≤ 1

The relation key {T, I, B} can be enforced as:
DT(t) ∧ DI(i) ∧DB(b) → 0 ≤ #({S, A : R(t, i, b, S, A))}) ≤ 1

(ii): Enforcing the overall number of tuples
There must be between 50000 and 100000 tuples in any instance of R:

true→ 50000 ≤ #({T, I, B, S, A : R(T, I, B, S, A)}) ≤ 100000

(iii): Enforcing the total number of transactions in an area
There must be between 1000 and 2000 transactions in every region, except in ”Cal”

for which the upper bound is increased to 9000:
true → 1000 ≤ #({T : ∃I, B, SR(T, I, B, S, ”Cal”)})≤ 9000;

DA(a) ∧ a 6= ”Cal” →1000 ≤ #({T : ∃I, B, SR(T, I, B, S, a)}) ≤ 2000.

If we wish to enforce the above transaction constraint in every store of an area, we
can use the dimension hierarchy domainDS,A:

DS,A(s, ”Cal”) → 1000 ≤ #({T : ∃I, BR(T, I, B, s, ”Cal”)})≤ 9000;

DS,A(s, a) ∧ a 6= ”Cal” → 1000 ≤ #({T : ∃I, BR(T, I, B, s, a)}) ≤ 2000 .

(iv): 1-arity group count constraints
Both the set of items i = {[a], [b], [c]} and j = {[b], [c], [d]}) must be present in

at least 100 and in at most 200 transactions, whereas every other set s of items cannot
appear in more than 15 transactions if s containsmore than 10 elements or 20 otherwise,
except for all subsets of i and j that have no limits (for space reasons we write below i
and j to represent the two constant set terms):

x = i ∨ x = j → 100 ≤ #({T : x ⊆ {I : ∃B, S, AR(T, I, B, S, A)}}) ≤ 200;

x ⊆ {I : DI(I)}∧x 6⊂ i ∧ x 6⊂ j ∧#(x) ≤ 10 →
0 ≤ #({T : x ⊆ {I : ∃B, S, AR(T, I, B, S, A)}}) ≤ 20;

x ⊆ {I : DI(I)} ∧ x 6⊂ i ∧ x 6⊂ j ∧#(x) > 10 →
0 ≤ #({T : x ⊆ {I : ∃B, S, AR(T, I, B, S, A)}}) ≤ 15.

Note that the first of the above constraints has a disjunction in the left hand side: it
is only a shorthand to represent two constraints having the same right hand side.

The above constraints define an instance of an IFM problem [13–15] for which, in
addition to fixing support constraints for a number of pre-defined itemsets (typically the
frequent ones, in this case i and j), there are generic support constraints for all other
itemsets (the unfrequent ones). The example confirms that Inverse OLAP is a powerful
extension of IFM.
(v): 2-arity group count constraints

There must be at least 100 and at most 200 transactions containing an item ”sm”
(smartphone) of the brand ”nd” (ndrangtung), whereas the same set of pairs of item and
brand are sold together in at most 10 transactions, except for the ones containing the
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pair (”sm”, ”nd”) for which the limit is 50 (for space reasons we write t to represent
the singleton constant set term {[”sm”, ”nd”]}):

true→100 ≤ #({T : t ⊆ {I, B : ∃S, AR(T, I, B, S, A))}}) ≤ 200;

x ⊆ {I, B :DI(I) ∧ DB(B)} ∧ t ⊂ x →
0 ≤ #({T : x ⊆ {I, B : ∃S, AR(T, I, B, S, A))}}) ≤ 50;

x ⊆ {I, B :DI(I) ∧ DB(B)} ∧ t 6⊂ x →
0 ≤ #({T : x ⊆ {I, B : ∃S, AR(T, I, B, S, A))}}) ≤ 10.

(Recall that ⊂ denotes strict subset relationship.) The above constraints define an
instance of an Inverse Frequent Itemset problem in which classical itemsets are replaced
by sets of object pairs.

4 A Step towards Aggregate Data Exchange
Data exchange [5–7] is the problem of migrating a data instance from a source schema
to a target schema such that the materialized data on the target schema satisfies the
integrity constraints specified by it. The classical data exchange setting is: (S, T,Σst,
Σt), where S is the source relational database schema, T is the target schema, Σt are
dependencies on the target scheme T and Σst are source-to-target dependencies.

The dependencies in Σst mapping data from the source to the target schema are
TGDs (Tuple Generating Dependencies) and have the following format: ∀X(φS(X) →
∃Y ψT (X,Y) ), where φS(X) and ψT (X,Y) are formula on S and T , respectively,
andX,Y are lists of variables.

Dependencies in Σt specify constraints on the target schema, which the imported
data must satisfy, and can be either TGDs or EGDs (Equality Generating Dependencies)
having the form ∀X(ψT (X) → x1 = x2 ), where x1 and x2 are variables inX.

It is easy to see that a generic EGD can be formulated by the following count con-
straint: ∀X′ ( true→ 0 ≤ #({y : ψ(y,X′)} ) ≤ 1), whereX′ contains all variables in
X except x1 and x2; moreover, y replaces both x1 and x2 in ψ.
Aggregate data exchange for preserving privacy

The target relational database scheme consists of a unique relation scheme, that is
the one used in Section 3:R(T, I, B, S,A). Recall that the meaning of the attributes is:
T (Transaction), I (Item), B (Brand), S (Store), A (Area), and that the following FDs
hold: T → S, S → A.

The source relational database scheme consists of three relation schemes: TR(T, I,
B), ST (T, S) andAR(S,A). Observe that this scheme is the normalized version of the
target scheme.

We want the target relation to be the natural join of the source relation but, for
privacy reasons, the associations between transactions and pairs of item and brand must
be perturbed: the transactions IDs of the same store are permuted. For instance, if the
store s has n transactions t1, . . . , tn, the block of item-brand pairs of a transaction ti
are moved to a transaction tj , then the block of tj is moved to another transaction and
so on.

Let us first use the classical setting to implement two natural joins of the source
relations instead of only one so that we can later perform a permutation of transactions
inside every store:
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TR(t, i, b) ∧ ST (t, s) ∧ AR(s, a) → ∃TR(T, i, b, s, a);

ST (t, s) → ∃I, B, A R(t, I, B, s, A).

We now use a count constraint to enforce that the total number of tuples in TR is
equal to the total number of tuples inR so that the target relation cannot store additional
tuples:

x = #({T, I, B : TR(T, I, B)}) → x = #({T, I, B, S, A : R(T, I, B, S, A)}).
So we have lost the correspondence between transactions in the source and in the

target scheme; but the following constraint imposes that the original structure of trans-
actions is preserved modulo permutation of transactions IDs:

ST (t, s) ∧ x = {I, B : TR(t, I, B)}) → ∃T ( x = {I, B : ∃A R(T, I, B, s, A)} ).

Data exchange to an OLAP scheme
We now assume that the relation R(T, I, B, S,A) represents the source scheme.

The target scheme is an OLAP scheme SN (S, I, B,N) that, for every store, represents
in N the total number of item-brand pairs that are in all transactions of that store.

We aggregate data in the target relation using a count predicate in the following
constraint:

n = #({T : R(T, i, b, s, a)}) → SN (s, i, b, n).

A final count constraint imposes that the target relation cannot store additional tu-
ples:
x = #({S, I, B : ∃T, A R(T, I, B, S, A)}) → x = #({S, I, B : ∃N SN (S, I, B, N)} ).

5 Conclusion

We have introduced a new type of constraints, called count constraints, and a new in-
verse mining problem, called Inverse OLAP, that is a powerful extension of Inverse
Frequent itemsets Mining: given a star schema consisting of a unique fact table and a
number of count constraints, does there exist a satisfying relation? The new problem
turns out to be NEXP complete under various conditions: combined complexity, pro-
gram complexity and data complexity. We have also shown that count constraints can
be used for performing aggregate data exchange.

We conclude by mentioning that, despite the high complexity of the Inverse OLAP
problem, an approximate solution can be found in a limited amount of time in some
practical situations even for large instances, by adopting and extending classical tech-
niques used for solving large-scale linear programming. In [19] one of such techniques,
called column-generation linear programming, is applied to solve an IFM problem (in-
deed non just the decision problem but the actual construction of a satisfying transaction
database), that can be though of as a special case of inverse OLAP. Such techniques are
capable of handling instances with several hundreds of items. In addition our current
research is devoted to single out cases for which complexity of Inverse OLAP becomes
polynomial under the data complexity by considering particular cases of count con-
straints.
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